Final Report of Geotechnical Engineering Investigation for Bridge Structures WEKIVA PARKWAY (SR 429) – SECTION 7A From 0.2 Miles West of Longwood-Markham Road to 0.1 Miles East of Orange Boulevard Seminole County, Florida Financial Project ID 240200-2-52-01 GEC Project No. 3520G July 13, 2017

AECOM 315 East Robinson Street, Suite 245 Orlando, Florida 32801

Attention: Mr. Steve Noppinger, P.E. Project Manager

Subject: Final Report of Geotechnical Engineering Investigation for Bridge Structures WEKIVA PARKWAY (SR 429) – SECTION 7A From 0.2 Miles West of Longwood-Markham Road to 0.1 Miles East of Orange Boulevard Seminole County, Florida Financial Project ID 240200-2-52-01 GEC Project No. 3520G

Dear Mr. Noppinger:

Geotechnical and Environmental Consultants, Inc. (GEC) is pleased to present this Report of Geotechnical Engineering Investigation for Bridge Structures for the above-referenced project. The purpose of our investigation was to explore subsurface conditions at seven bridge sites and to evaluate bridge foundation alternatives and provide geotechnical engineering recommendations to aid in design and construction of the proposed structures. This report presents the results of our field and laboratory investigations and includes our bridge foundation recommendations.

The analyses and recommendations in this report are based on bridge design information provided by AECOM and IDA Consulting Engineers and data collected by GEC during the project design phase.

GEC appreciates the opportunity to be of service to AECOM and FDOT on this project. If you should have any questions concerning the contents of this report, please contact us.

Very truly yours,

GEOTECHNICAL AND ENVIRONMENTAL CONSULTANTS, INC. 919 Lake Baldwin Lane Orlando, Florida 32814 *Certificate of Authorization No. 5882*

Craig G. Ballock, P.E. 7/13/1 Senior Geotechnical Engineer Florida License No. 71571

136 Daniel C. Stanfill, P.E. **Senior Vice President** Florida License No. 42763

CGB/DCS/dbj

cc: Mr. Jeongsoo Ko, Ph.D., P.E. (Geotechnical Project Manager, FDOT District 5)

Table of Contents

1.0	SITE AND PROJECT DESCRIPTION	1
2.0	REVIEW OF AVAILABLE DATA	4
	2.1 NRCS Soil Survey	4
	2.2 USGS Quadrangle Map	6
	2.3 USGS Potentiometric Map Data	
	2.4 Regional Geology	7
	2.5 Previously Performed Geotechnical Investigations	9
3.0	SUBSURFACE EXPLORATION	10
	3.1 SPT Borings	11
	3.2 Groundwater Measurement	12
	3.3 Undisturbed Samples	12
4.0	LABORATORY TESTING	
	4.1 Consolidation Testing	13
5.0	SUBSURFACE CONDITIONS	14
	5.1 SPT Boring Results for SR 429 over Osprey Hammock Trail	
	5.2 SPT Boring Results for SR 429 over Longwood Markham Road	
	5.3 SPT Boring Results for SR 429 over Yankee Lake Road	
	5.4 SPT Boring Results for SR 429 over Lake Markham Road	
	5.5 SPT Boring Results for SR 429 over Glade View Drive	
	5.6 SPT Boring Results for SR 429 over Eastbound Frontage Road	
	5.7 SPT Boring Results for SR 429 over Orange Avenue and Orange Boulevard	
	5.8 Groundwater Levels	24
6.0	ANALYSES AND RECOMMENDATIONS	25
	6.1 Axial Load Analysis – Steel Pipe Piles	25
	6.2 Axial Load Analysis - Driven PPC Piles	27
	6.3 Downdrag Settlement Considerations	29
	6.4 Noise and Vibration Considerations	31
	6.5 FB-Multi Pier Soil Parameters	31
7.0	SINKHOLE RISK	31
8.0	USE OF THIS REPORT	33

APPENDIX

Pile Data Tables & Davisson Pile Capacity Curves SR 429 over Longwood Markham Road SR 429 over Yankee Lake Road SR 429 over Lake Markham Road SR 429 over Glade View Drive SR 429 over Eastbound Frontage Road Site

SR 429 over Orange Avenue & Orange Boulevard

Figures

USGS Quadrangle and NRCS Soil Survey Maps Boring Location Plan and Report of SPT Borings – Osprey Hammock Trail Bridge Site Boring Location Plan and Report of SPT Borings – Longwood Markham Road Bridge Site Boring Location Plan and Report of SPT Borings – Yankee Lake Road Bridge Site Boring Location Plan and Report of SPT Borings – Lake Markham Road Bridge Site Boring Location Plan and Report of SPT Borings – Glade View Drive Bridge Site Boring Location Plan and Report of SPT Borings – Eastbound Frontage Road Site Boring Location Plan and Report of SPT Borings – Corange Ave. & Orange Blvd. Bridge Site

Tables

Table 15: Corrosion Series Tests Results

Appendix A

Summary of Monitor Existing Structures FB-Multi Pier Soil Parameters Sample FB-Deep Analyses Consolidation Test Results FDOT Line & Grade Study Preliminary Report for Structures (7/2/12): Boring Location Plan and Report of SPT Boring for Structures Sheet The Wekiva Parkway (SR 429) Segment 7A project alignment... begins 0.2 miles west of Longwood-Markham Road (Station 954+00) and ends 0.1 miles east of Orange Boulevard (Station 1055+70)... The Wekiva Parkway (SR 429) Segment 7A project alignment consists of an approximately 2-mile long portion of the Wekiva Parkway alignment that begins 0.2 miles west of Longwood-Markham Road (Station 954+00) and ends 0.1 miles east of Orange Boulevard (Station 1055+70) in Seminole County, Florida. The project alignment is depicted on excerpts of the U.S. Geological Survey (USGS) Sanford and Sanford SW, Florida Quadrangle Maps (**Figure 1**) in the **Appendix**.

Based on our review of the project plans, we understand the following major project elements are proposed along the project alignment:

- An approximately 2-mile long portion of the Wekiva Parkway alignment that begins 0.2 miles west of Longwood-Markham Road (Station 954+00) and ends east of Orange Boulevard (Station 1055+70). The proposed roadway typical section in this area includes a four-lane divided (expandable to six-lane divided) section. The proposed roadway profile depicts all but about 1,000 feet (Station 993+00 to 1003+00) of high fill embankment ranging in height from 10 to 38 feet above existing grade.
- Two service road alignments (north and south of SR 429) to provide access to local traffic.
- MSE walls are proposed along the SR 429 mainline alignment in all areas of high fill with wall heights ranging from approximately 10 to 38 feet above existing grade.
- Six bridge sites including:
 - Wekiva Parkway over Longwood Markham Road (twin bridges)
 - Wekiva Parkway over Yankee Lake Road (twin bridges)
 - Wekiva Parkway over Lake Markham Road (twin bridges)
 - Wekiva Parkway over Glade View Drive (twin bridges)
 - Wekiva Parkway over Eastbound Frontage Road (twin bridges)
 - Wekiva Parkway over Orange Avenue & Orange Boulevard (twin bridges)
- Two toll facilities located on Ramp E and Ramp F, which include a toll gantry structure and associated support facilities.
- Seven cantilever sign structures and four truss sign structures.
- Four mast arm signal poles at the intersection of Orange Boulevard and SR 46.
- One, approximately 282-ft long, 9-ft by 2-ft box culvert structure.
- Seven CCTV pole structures associated with the project ITS.

1

The majority of the land use along the project alignment consists of rural residential dwellings. The following details existing site conditions at each of the proposed bridge sites:

- Wekiva Parkway over Longwood Markham Road: Existing site conditions include the 2lane, rural "T" intersection of SR 46 with Longwood Markham Road. The intersection is mostly undeveloped with single family homes located more than 200 feet south of the proposed bridge site. Two existing gas lines are present on the north side of the existing SR 46, which are to be relocated during construction.
- Wekiva Parkway over Yankee Lake Road: Existing site conditions include the 2-lane, rural "T" intersection of SR 46 and Yankee Lake Road. The intersection is mostly undeveloped with single family homes located approximately 190 feet south of the proposed bridge site. Two existing gas lines are present on the north side of the existing SR 46, which are to be relocated during construction.
- Wekiva Parkway over Lake Markham Road: The proposed bridge site is approximately 120 feet north of the existing "T" intersection of SR 46 and Lake Markham Road. The bridge site is currently undeveloped with heavy tree cover that predominantly consists of longleaf pine at the eastbound bridge site and a combination of longleaf pine and cypress trees at the westbound bridge site. In addition, the bridge site is bordered to the north by Yankee Lake.
- Wekiva Parkway over Glade View Drive: Existing site conditions include the 2-lane, rural "T" intersection of SR 46 and Glade View Drive. The intersection is mostly undeveloped with a plant nursery facility located northwest of the intersection that is to be acquired as part of the right-of-way acquisition for the proposed project. Two existing gas lines are present on the north side of the existing SR 46, which are to be relocated during construction.
- Wekiva Parkway over EB Frontage Road: Existing site conditions include two, residential lots consisting of single-story residential structures and heavy tree cover. We understand both residences are to be acquired as part of the right-of-way acquisition for the proposed project.
- Wekiva Parkway over S. Orange Ave. & Orange Blvd.: Existing site conditions include the existing 2-lane, rural roadways of Wayside Drive and Orange Boulevard. In addition, the majority of the proposed bridge site is currently occupied by a single-story, commercial structure with associated parking lot that are to be acquired as part of the right-of-way acquisition for the proposed project. Adjacent, existing structures to the proposed bridge site also include a single-story residential structure to the north and the Lakeside Fellowship Church to the east. Both existing structures are within 200 feet of the proposed bridge site. An existing gas line is present on the north side of the existing Wayside Drive.

High fill embankments up to 38 feet high are anticipated at the proposed bridge abutments. MSE walls will be designed to support the embankments at the bridge abutments and along the majority of the SR 429 mainline within the project limits. The approximate bridge locations are shown on the U.S. Geological Survey (USGS) Florida Quadrangle map on **Figure 1** in the **Appendix**. A summary of the proposed bridge structures is presented in the following table:

					Approx. Individual Bridge	Approx. Individual Bridge	Approx.
Proposed	Begin	End	No. of	No. of	Length	Width	Embankment
Bridge Site	Station	Station	Bridges	Bents/Piers	(ft)	(ft)	Fill Height (ft)
SR 429 over							
Longwood Markham Road	964+01	967+59	2	3	358	43	34
(Bridge Nos. 770099/100)							
SR 429 over							
Yankee Lake Road	978+43	982+00	2	3	357	43	33
(Bridge Nos. 770101/102)							
SR 429 over							
Lake Markham Road	1021+21	1024+79	2	3	358	43 to 47	42
(Bridge Nos. 770103/104)							
SR 429 over							
Glade View Drive	1056+05	1059+53	2	3	348	47 to 55	34
(Bridge Nos. 770105/106)							
SR 429 over							
EB Frontage Road	1082+08	1083+59	2	2	151	43 to 47	30
(Bridge Nos. 770107/110)							
SR 429 over							
Orange Ave./Orange Blvd.	1104+61	1109+58	2	5	497	43 to 47	30
(Bridge nos. 770108/109)							

Table 1 Summary of Proposed Bridge Locations

Please note that due to a reduction in the project limits; the previously proposed bridge at Osprey Hammock Trail is no longer within the limits of the Wekiva Parkway Section 7A project alignment. However, the results of our soil borings for the Osprey Hammock Trail Bridge are still included within this report for informational purposes.

This report describes our exploration procedures, exhibits the data obtained and presents our conclusions and recommendations regarding the geotechnical engineering aspects of the bridge and elements of this project. Geotechnical recommendations and the results of our subsurface investigation for retaining walls are included under separate cover.

3

2.0 REVIEW OF AVAILABLE DATA

To obtain general information on soil and groundwater conditions in the project area, GEC reviewed available data including USGS Quadrangle Maps, the Natural Resources Conservation Service (NRCS) Soil Survey of Seminole County, the geotechnical Preliminary Report for Structures performed for the FDOT Wekiva Parkway Line & Grade Study and other published sources. A summary of this information is presented in the following report sections.

2.1 NRCS Soil Survey

The Natural Resources Conservation Service (NRCS) Soil Survey of Seminole County was reviewed to obtain near-surface soils information in the vicinity of the proposed bridge sites. According to the NRCS map, the soils in the vicinity of the proposed bridge sites are summarized below. The NRCS Soil Survey map of the project area is shown on **Figure 1** in the **Appendix**.

Unit No.	Soil Name	Depth (inches)	Soil Description	Unified Soil Classification Symbol	Depth to Seasonal High Groundwater (feet)
	Adamsville fine sand	0 – 4 4 – 80	Fine sand Fine sand, sand	SP-SM SP, SP-SM	2.0 - 3.5
2	Sparr fine sand	0 - 41 41 - 43 43 - 72 72 - 80	Fine sand, sand Sandy loam, sandy clay loam Sandy clay, sandy clay loam Sandy loam, sandy clay loam	SP-SM, SM SM, SC-SM, SM SC-SM, SC SM, SC-SM, SC	1.5 – 3.5
	Astatula fine sand, 0 to 5 percent slopes	0 – 80	Fine sand, sand	SP, SP-SM	
6	6 Apopka fine sand, 0 to 5 0- 64 percent slopes		Fine sand Sandy clay loam, sandy loam, sandy clay	SP, SP-SM SC-SM, SC	> 6.0
	Basinger soil, depressional	0 - 6 6 - 80	Mucky fine sand Fine sand, sand	SP, SP-SM SP, SP-SM	
10	Hontoon soil, depressional	0 – 80	Muck	РТ	+2.0 - 0.0
	Samsula soil, depressional		Muck Fine sand, loamy sand	PT SP, SP-SM, SM	

Table 2 NRCS Soil Survey Classifications

Unit No.	Soil Name	Depth (inches)	Soil Description	Unified Soil Classification Symbol	Depth to Seasonal High Groundwater (feet)
	Myakka fine sand	0 - 28 28 - 45 45 - 80	Fine sand, sand Fine sand, sand, loamy fine sand Fine sand, sand	SP, SP-SM SP-SM, SM SP, SP-SM	
20	EauGallie fine sand	0 - 18 18 - 30 30 - 41 41 - 60 60 - 80	Fine sand Fine sand, sand Fine sand, sand Sandy clay loam, sandy loam Loamy sand, sand	SP, SP-SM SP-SM, SM SP, SP-SM SM, SC-SM, SC SP-SM, SM	0.5 – 1.5
27	Pomello fine sand, 0 to 5 percent slopes	0 - 31 31 - 40 40 - 80	Fine sand Fine sand, sand Fine sand, sand	SP, SP-SM SP-SM, SM SP, SP-SM	2.0 - 3.5
	Tavares fine sand, 0 to 5 percent slopes	0 - 80	Fine sand, sand	SP, SP-SM	
31	Millhopper fine sand, 0 to 5 percent slopes	0 – 45 45 – 54 54 – 80	Fine sand Sandy loam, loamy fine sand Sandy clay loam, sandy loam	SP-SM, SM SM SM, SC-SM, SC	3.5 - 6.0

In general, the NRCS soil survey map depicts sandy soils with seasonal high groundwater levels ranging from 0.5 to greater than 6.0 feet below the natural ground surface. The soils classifying as SP, SP-SM and SM can be treated as Select (S) soil types and are generally appropriate for use as fill material to support structures, roadways and embankments. However, the clayey soils classifying as SC and SC-SM have limited suitability for use as fill material.

At the Lake Markham Road bridge site the NRCS soil survey map depicts Basinger, Samsula and Hontoon soils, depressional (10). At the Lake Markham Road bridge site the NRCS soil survey map depicts Basinger, Samsula and Hontoon soils, depressional (10). This soil type contains high organic content soils that are generally classified as PT in the USCS and can have severe limitations for roadway construction. In addition, the NRCS predicts seasonal high groundwater levels

for this soil type to range from 2 feet above the existing ground surface to at the existing ground surface.

Information contained in the NRCS Soil Survey is very general and may be outdated. It may not therefore be reflective of actual soil and groundwater conditions, particularly if recent

development in the site vicinity has modified soil conditions or surface/subsurface drainage. The soils and groundwater data collected as part of this study should be considered a more accurate representation of soil conditions along the project alignment.

2.2 USGS Quadrangle Map

Based on our review of the USGS Sanford and Sanford Southwest, Florida Quadrangle maps and the project plans, the existing ground surface elevations along the project alignment typically range from approximate elevation +34 to +74 feet NAVD88. In addition, the quadrangle map indicates that portions of the project alignment were historically used for citrus groves and that the proposed alignment crosses in the vicinity of several topographically lower swamp features near the proposed Glade View Drive bridge site.

...several circular depression features and circular lakes, indicative of relic sinkholes... are... in the vicinity of the project alignment. Also of note are several circular depression features and circular lakes, indicative of relic sinkholes, which are depicted on the quadrangle map in the vicinity of the project alignment. Lakes in the vicinity of the project alignment include Miranda Lake, Ross Lake, Yankee Lake, and Sylvan Lake.

The project alignment and proposed bridge sites are depicted on an excerpt of the U.S. Geological Survey (USGS) Sanford and Sanford Southwest, Florida Quadrangle Maps (**Figure 1**) in the **Appendix**.

Based on our review of the project plans and available topographic survey information at our boring locations, the existing ground surface elevation at the proposed bridge sites is summarized in the following table:

	Approximate Existing Ground
Proposed	Surface Elevation Range
Bridge Site	(ft NAVD88)
SR 429 over Longwood Markham Road	+54 to +57
SR 429 over Yankee Lake Road	+53 to +56
SR 429 over Lake Markham Road	+35 to +38
SR 429 over Glade View Drive	+47 to +51

Table 3Summary of Ground Surface Elevations at Bridge Sites

GEC Project No. 3520G

	Approximate Existing Ground
Proposed	Surface Elevation Range
Bridge Site	(ft NAVD88)
SR 429 over EB Frontage Road	+60 to +65
SR 429 over Orange Ave./Orange Blvd.	+72 to +74

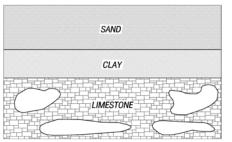
2.3 USGS Potentiometric Map Data

GEC reviewed the September 2008 USGS Map, "Potentiometric Surface of The Upper Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida," to evaluate the potentiometric surface elevation of the Floridan Aquifer at the proposed bridge sites. The following table summarizes the anticipated maximum elevation of the potentiometric surface at the proposed bridge sites:

Table 4Summary of Potentiometric Surface Elevationof the Floridan Aquifer at Proposed Bridge Sites

	Approximate Potentiometric	Approximate Existing Ground
Proposed	Surface Elevation	Surface Elevation Range
Bridge Site	(ft NAVD88)	(ft NAVD88)
SR 429 over Longwood Markham Road	+19	+54 to +57
SR 429 over Yankee Lake Road	+19	+53 to +56
SR 429 over Lake Markham Road	+21	+35 to +38
SR 429 over Glade View Drive	+22	+47 to +51
SR 429 over EB Frontage Road	+23	+60 to +65
SR 429 over Orange Ave./Orange Blvd.	+23	+72 to +74

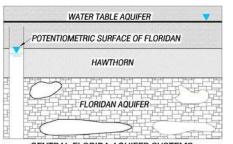
...artesian flow conditions are not anticipated at the proposed bridge sites. Since the existing ground surface elevations at the proposed bridge sites are above the predicted potentiometric surface, artesian flow conditions are not anticipated at the proposed bridge sites. Artesian conditions were not encountered in any of the bridge boring locations.


2.4 Regional Geology

Due to its prevalent geology, referred to as karst, Central Florida is prone to the formation of sinkholes, or large, circular depressions created by local subsidence of the ground surface. The nature and relationship of the three sedimentary layers typical of Central Florida geology cause sinkholes. The deepest, or basement, layer is a massive cavernous limestone formation known as

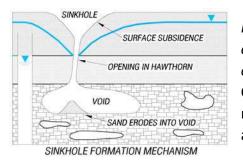
GEC Project No. 3520G

Final Report of Geotechnical Engineering Investigation for Bridge Structures Wekiva Parkway (SR 429) – Section 7A


7

KARST GEOLOGY OF CENTRAL FLORIDA

the Floridan aquifer. The Floridan aquifer limestone is overlain by a silty or clayey sand, clay, phosphate, and limestone aquitard (or flow-retarding layer) ranging in thickness from nearly absent to greater than 100 feet and locally referred to as the Hawthorn formation. The Hawthorn formation is in turn overlain by a 40 to 70-foot thick surficial layer of sand, bearing the water table aquifer. The likelihood of sinkhole occurrence at a given site within the region is


determined by the relationship among these three layers, specifically by the water (and soil)transmitting capacity of the Hawthorn formation at that location.

CENTRAL FLORIDA AQUIFER SYSTEMS

The water table aquifer is comprised of Recent and Pleistocene sands and is separated from the Eocene limestone of the Floridan aquifer by the Miocene sands, clays and limestone of the Hawthorn formation. Since the thickness and consistency of the Hawthorn layer is variable across Central Florida, the likelihood of groundwater flow from the upper to the lower aquifer (known as aquifer recharge) will also vary by geographical location. In areas

where the Hawthorn formation is absent, water table groundwater (and associated sands) can flow downward to cavities within the limestone aquifer, like sand through an hourglass, recharging the Floridan aquifer, and sometimes causing the formation of surface sinkholes. This process of subsurface erosion associated with recharging the Floridan aquifer is known as raveling. Thus, in Central Florida, areas of effective groundwater recharge to the Floridan aquifer have a higher potential for the formation of surface sinkholes.

No method of geological, geotechnical, or geophysical exploration is known that can accurately predict the occurrence of sinkholes. It is common geotechnical practice in Central Florida to make a qualitative prediction of sinkhole risk on the basis of local geological conditions in the vicinity of a particular site.

Based on our review of the U.S. Geological Survey Map entitled "Recharge and Discharge Areas of the Floridan Aquifer in the St. Johns River Water Management District and Vicinity, Florida," 1984, the extent of recharge to the Floridan Aquifer at the proposed bridge sites is summarized in the following table:

GEC Project No. 3520G

Final Report of Geotechnical Engineering Investigation for Bridge Structures Wekiva Parkway (SR 429) – Section 7A

8

Table 5 Summary of Recharge to the Floridan Aquifer at Proposed Bridge Sites

Proposed	Recharge to		
Bridge Site	Floridan Aquifer		
SR 429 over Longwood Markham Road	None		
SR 429 over Yankee Lake Road	Low to Moderate		
SR 429 over Lake Markham Road	High		
SR 429 over Glade View Drive	High		
SR 429 over EB Frontage Road	High		
SR 429 over Orange Ave./Orange Blvd.	High		

We can conclude based solely on the available recharge data that the proposed bridge structures are located in an area where the relative risk of sinkhole formation ranges from low to high compared to the overall risk across Central Florida.

2.5 Previously Performed Geotechnical Investigations

In addition to the geotechnical data gathered during the subsurface exploration program performed for this study, GEC also utilized geotechnical data relevant to the project area from geotechnical investigations performed by others. This existing geotechnical data included an SPT boring performed during the FDOT Wekiva Parkway Line and Grade Study, which was documented in the Preliminary Report for Structures, dated July 2, 2012 prepared by Ardaman and Associates, Inc. The location and depth of the Line & Grade Study SPT boring is summarized in the following table:

Table 6Previously Performed SPT Boring Location and Depth

					Ground Surface	Boring
Bridge	Boring	Date		Offset	Elevation	Depth
Site	No.	Performed	Station	(ft)	(ft NAVD88)	(ft)
SR 429 over Glade View Drive	TH-1058	1/12/12	1058+04	4 RT	+47.7	125

The Report of SPT Boring for Structures sheet with the encountered boring profile as documented in the Line & Grade Study Report are included in the **Appendix** of this Report.

3.0 SUBSURFACE EXPLORATION

GEC evaluated subsurface conditions at the proposed bridge sites by performing one Standard Penetration Test (SPT) boring at each of the bridge bent/pier locations. GEC completed a total of 43 SPT borings to depths ranging from 90.5 feet to 225.5 feet below existing ground surface. The locations and depths of our borings are summarized in the following table:

					Ground Surface	Boring
Bridge	SR 429	Boring		Offset	Elevation	Depth
Site	Direction	No.	Station	(ft)	(ft NAVD88)	(ft)
	EB	BR-1	940+00	67 RT	+34.9	80.5
SR 429 over	EB	BR-2	941+89	19 RT	+39.0	80.5
Osprey Hammock	EB	BR-3	943+67	34 RT	+43.8	95.5
Trail – No Longer	WB	BR-4	940+00	9 LT	+34.3	85.5
Within Project Limits	WB	BR-5	941+98	19 LT	+41.0	85.5
	WB	BR-6	943+70	16 LT	+44.9	90.5
SR 429 over	EB	BR-7	964+03	43 RT	+54.7	115.5
Longwood Markham	EB	BR-8	965+78	39 RT	57.0	140.0
Road	EB	BR-9	968+61	42 RT	53.7	105.5
SR 429 over	WB	BR-10	964+05	55 LT	+55.5	138.0
Longwood Markham	WB	BR-11	965+99	65 LT	+56.4	145.5
Road	WB	BR-12	967+58	67 LT	+55.8	135.5
	EB	BR-13	978+45	32 RT	+55.2	120.0
	EB	BR-14	980+05	39 RT	+56.4	170.5
SR 429 over	EB	BR-15	982+00	43 RT	+52.5	110.5
Yankee Lake Road	WB	BR-16	978+47	6 LT	+54.2	120.5
	WB	BR-17	980+40	5 LT	+55.8	120.5
	WB	BR-18	981+97	12 LT	+55.3	100.5
	EB	BR-19	1021+28	6 RT	+37.7	120.5
	EB	BR-20	1023+09	32 RT	+38.2	130.5
SR 429 over	EB	BR-21	1024+76	20 RT	+36.0	153.0
Lake Markham Road	WB	BR-22	1021+37	40 LT	+36.1	210.5
	WB	BR-23	1023+19	46 LT	+36.3	225.5
	WB	BR-24	1024+86	30 LT	+35.4	168.0
	EB	BR-25	1055+96	46 RT	+46.6	95.5
SR 429 over	EB	BR-26	1059+56	63 RT	+47.0	90.5
Glade View Drive	WB	BR-27	1056+05	40 LT	+48.0	90.5
Glade view Drive	WB	BR-28	1057+87	39 LT	+50.3	120.5
	WB	BR-29	1059+60	33 LT	+50.9	130.5

Table 7 Bridge SPT Boring Locations and Depths

GEC Project No. 3520G

Bridge Site	SR 429 Direction	Boring No.	Station	Offset (ft)	Ground Surface Elevation (ft NAVD88)	Boring Depth (ft)
	EB	BR-30B	1081+64	45 RT	+62.2	115.5
SR 429 over	EB	BR-31B	1083+12	45 RT	+62.6	110.5
Frontage Road	WB	BR-30A	1082+55	30 LT	+61.7	115.5
	WB	BR-31A	1084+04	51 LT	+64.5	110.5
	EB	BR-32	1103+84	9 RT	+72.4	115.5
	EB	BR-33	1105+20	48 RT	+72.5	125.5
	EB	BR-34	1106+60	55 RT	+73.7	123.0
SR 429 over	EB	BR-35	1108+24	36 RT	+71.5	120.5
Orange Ave. /	EB	BR-36	1110+00	36 RT	+71.6	130.5
Orange Blvd.	WB	BR-37	1104+63	33 LT	+72.4	120.5
Orange bivu.	WB	BR-38	1105+69	1 RT	+72.8	135.5
	WB	BR-39	1106+69	80 LT	+73.7	125.5
	WB	BR-40	1107+47	45 LT	+73.0	125.5
	WB	BR-41	1109+14	39 LT	+74.0	120.5

The locations of the borings drilled for this study are shown on the Boring Location Plan sheets in the **Appendix**. Boring locations were established in the field using project plans and a handheld, sub-meter accuracy, Global Positioning Satellite (GPS) unit (Trimble GeoXT 500 Series) and were later surveyed for horizontal and vertical control by AECOM. Boring locations reference the SR 429 centerline.

3.1 SPT Borings

SPT borings were drilled in general accordance with ASTM Procedure D-1586. The boreholes were advanced by the rotary wash method with bentonite-based mud used as the circulating fluid to stabilize the borehole. Casing was used as necessary to stabilize the borehole and prevent loose surficial sands from raveling into the lower more stable portions of the borehole. GEC's field crew obtained SPT samples continuously in the borings to a depth of 10 feet and at 5-foot depth intervals thereafter. However, some boring locations were hand augered to a depth of 6 feet to avoid damage to underground utilities. A GEC engineering technician monitored the drilling operation, and collected, examined and visually classified each sample. He then packaged representative portions of each sample for transport to our laboratory for further examination and laboratory testing.

3.2 Groundwater Measurement

Since all SPT borings were grout-sealed upon completion, a GEC engineering technician performed a hand auger boring adjacent to the grouted borehole to obtain a stabilized groundwater depth. Once a 24-hour groundwater measurement was recorded, the hand auger boreholes were then backfilled with soil cuttings to prevailing ground surface.

3.3 Undisturbed Samples

Undisturbed samples of compressible soils at the proposed bridge sites were collected using a thinwalled "Shelby" tube sampler. The sampler was hydraulically pushed into the soil at the desired sample depth. After allowing the sampler to sit for a short period of time it was retrieved from the borehole where the soil at the top and bottom of the tube was sampled and classified. The 3-inch diameter tube was moisture sealed in the field immediately after sampling and returned to our laboratory for further examination and testing. The sample depth is noted on the Report of SPT Borings for Structures sheets in the **Appendix**.

4.0 LABORATORY TESTING

Selected soil samples obtained from the borings were tested in accordance with Florida Standard Testing Methods (FM). Florida Standard Testing Methods are adaptations of recognized standard methods, e.g., ASTM and AASHTO, which have been modified to accommodate Florida's geological conditions. The GEC laboratory is reviewed annually by the Construction Materials Engineering Council, Inc. (CMEC) to verify compliance with FM. Our laboratory testing program is summarized in the following table:

Type of Test	Number of Tests
Percent Fines (FM 1-T88)	189
Atterberg Limits (FM 1-T89/90)	41
Natural Moisture Content (FM 1-T265)	49
Organic Content (FM 1-T 267)	7
Corrosion Series (FM 5-550/551/552/553)	14
Unit Weight (ASTM D7263-09)	3
Specific Gravity (FM 1-T100)	3
Consolidation Test (ASTM D-2435)	3

Table 8 Summary of Laboratory Testing Program

The results of our laboratory tests are shown adjacent to the soil profiles on the Report of SPT Borings for Structures sheets in the **Appendix**.

Corrosion series tests were performed on representative soil samples obtained at the bridge sites to evaluate the substructure environmental classification. In accordance with the FDOT Structure Design Guidelines and the results of our corrosion series test results, which are included in **Table 15** in the **Appendix**, the substructure environmental classification for each bridge site is summarized in the following table. The superstructure environmental classification is estimated to be slightly aggressive for concrete and steel bridge components at all bridge sites.

Bridge	Substructure Environ	mental Classification
Site	Concrete	Steel
SR 429 over Longwood Markham Road	Moderately Aggressive	Extremely Aggressive
SR 429 over Yankee Lake Road	Moderately Aggressive	Extremely Aggressive
SR 429 over Lake Markham Road	Moderately Aggressive	Extremely Aggressive
SR 429 over Glade View Drive	Moderately Aggressive	Extremely Aggressive
SR 429 over EB Frontage Road	Moderately Aggressive	Extremely Aggressive
SR 429 over Orange Ave./Orange Blvd.	Slightly Aggressive	Slightly Aggressive

Table 9Substructure Environmental Classification Summary

4.1 Consolidation Testing

A portion of the undisturbed samples obtained at the boring locations were sampled for onedimensional consolidation testing in general accordance with ASTM-D2435. Undisturbed samples selected for testing are carefully trimmed and placed in the fixed ring consolidometer. A seating pressure of about 100 psf is applied and the sample is inundated in water. The sample submergence is maintained throughout the test.

The sample is then incrementally loaded and deflections are monitored. Each incremental load is maintained until internal pore pressures are dissipated as indicated by a flattening of the time-deflection curve. A rebound of the sample is provided at a selected load increment when the sample is unloaded and reloaded to obtain further details of the loading characteristics of the soil.

The data obtained during incremental loading is reduced and a semi-log plot of sample void ratio versus applied stress is created. A copy of this curve is included in the **Appendix** of this report. This curve is utilized to estimate the magnitude of settlement that will be induced by anticipated site loadings. The curve is also used to estimate the pre-consolidation pressure (P_c) and the over-consolidation ratio (OCR) of the soils tested. The results of our consolidation test and associated laboratory soil classification tests are summarized in the following table.

		USCS	Test			Overburden				
	Boring	Soil	Depth	N-Value		Pressure	Pc			
Bridge Site	No.	Туре	(feet)	(blows/ft)	eo	(tsf)	(tsf)	OCR	C _c	Cr
SR 429 over										
Lake Markham	BR-24	PT	20.5 – 22.5	2	2.57	0.49	1.06	2.16	0.38	0.04
Road										
SR 429 over	BR-30B	СН	38 - 40	4	1.80	1.60	2.09	1.31	0.37	0.06
Frontage Road	BK-30B	СП	38 - 40	4	1.80	1.00	2.09	1.51	0.57	0.00
SR 429 over										
Orange Ave. /	BR-32	СН	43 - 45	7	2.60	1.35	3.85	2.85	0.89	0.11
Orange Blvd.										

Table 10Summary of Consolidation Test Results

5.0 SUBSURFACE CONDITIONS

The results of the SPT borings are shown on the Report of SPT Borings for Structures sheets in the **Appendix**. The boring logs describe the soil layers using the Unified Soil Classification System (USCS) symbol (e.g., SP-SM) and ASTM soil descriptions (e.g., sand with silt). We based our soil classifications and descriptions on visual examination and the limited laboratory testing shown adjacent to the boring profiles on the Report of SPT Borings for Structures sheets.

The boring logs indicate subsurface conditions only at the specific boring locations at the time of our field exploration. Subsurface conditions, including groundwater levels, at other locations of the subject site may differ from conditions we encountered at the boring locations. Moreover, conditions at the boring locations can change over time. Groundwater levels fluctuate seasonally, and soil conditions can be altered by earthmoving operations.

The depths and thicknesses of the subsurface strata indicated on the boring logs were interpolated between samples obtained at different depths in the borings. The actual transition between soil

GEC Project No. 3520G

layers may be different than indicated. These stratification lines were used for our analytical purposes. Quantity estimates based on the results of the borings will vary from the actual quantities measured during construction.

The following report sections describe the subsurface conditions encountered in our soil borings. For specific subsurface conditions encountered at each boring location, please refer to the Report of SPT Borings for Structures sheets in the **Appendix**.

5.1 SPT Boring Results for SR 429 over Osprey Hammock Trail

In general, the SPT borings (BR-1 through BR-6) performed for the SR 429 Bridges over Osprey Hammock Trail encountered the generalized subsurface profile summarized in the following table:

Table 11A Generalized Subsurface Profile SR 429 over Osprey Hammock Trail

	Layer			Typical
Layer	Elevation		Average	Range of
Number	(ft. NAVD88)	Description	N-Value	N-Values
1	+45 to +15	Loose to medium dense fine sand, fine sand with silt and silty fine sand (SP, SP-SM, SM)	8	4 - 20
2	+15 to +5	Very loose to loose fine sand, fine sand with silt and silty fine sand (SP, SP-SM, SM)	3	W/H - 5
3	+5 to 0	Loose to medium dense fine sand, fine sand with silt and silty fine sand (SP, SP-SM, SM)	8	3 - 17
4	0 to -10	Stiff to very stiff fat clay to fat clay with sand (CH) and medium dense clayey fine sand (SC)	12	6 - 21
5	-10 to -15	Medium dense silty fine sand (SM), trace to some shell and phosphate	12	9 - 14
6	-15 to -20	Very stiff to hard lean clay to lean clay with sand (CL), fat clay with sand (CH), elastic silt sand (MH) and sandy silt (ML)	66	18 - 50/1"
7	-20 to -50	Dense to very dense silty fine sand (SM), some to abundant weathered limestone, cemented sand and phosphate	94	32 - 50/0"

Notable exceptions to this generalized profile include:

• A layer of very dense sand was encountered in Layer 1 at boring location BR-5 from elevation +26 to +22 feet NAVD88.

GEC Project No. 3520G

- A layer of soft elastic silt was encountered in Layer 2 at boring location BR-1 from elevation +7 to +4 feet NAVD88.
- A layer of very dense silty fine sand was encountered at boring location BR-5 from elevation -12 to -25 feet NAVD88.
- Loss of drilling fluid circulation occurred at boring location BR-4 at elevation -20 feet NAVD88.
- Loss of drilling fluid circulation occurred at boring location BR-3 at elevations -18 and -26 feet NAVD88.
- Occasional layers of very dense or very hard material that the sampler could not penetrate were encountered at several of the boring locations between elevations -20 to -45 feet NAVD88.

5.2 SPT Boring Results for SR 429 over Longwood Markham Road

In general, the SPT borings (BR-7 through BR-12) performed for the SR 429 Bridges over Longwood Markham Road encountered the generalized subsurface profile summarized in the following table:

Table 11B Generalized Subsurface Profile SR 429 over Longwood Markham Road

Layer Number	Layer Elevation (ft. NAVD88)	Description	Average N-Value	Typical Range of N-Values
1	+57 to 0	Very loose to medium dense fine sand, fine sand with silt and silty fine sand (SP, SP-SM, SM)	12	2 - 23
2	0 to -20	Medium dense to very dense fine sand with silt (SP-SM)	25	13 - 51
3	-20 to -28	Very soft to stiff sandy silt to silt to elastic sandy silt (ML, MH) and sandy lean clay (CL), some cemented sand and trace phosphate	4	W/R - 12
4	-28 to -40	Very loose to medium dense silty fine sand (SM), trace to abundant cemented sand and phosphate	9	W/R - 13
5	-40 to -88	Medium dense to very dense silty fine sand (SM), trace to some shell and phosphate	57	13 - 50/1"

GEC Project No. 3520G

- At boring location BR-10, Layer 1 extended to elevation -22 feet NAVD88.
- Medium dense to very dense clayey fine sand (SC) was encountered in Layer 5 at boring location BR-12.
- Layers of very loose to very dense weathered limestone were encountered in Layer 5 at boring locations BR-10, BR-11 and BR-12.
- Losses of drilling fluid circulation occurred in Layer 5 at boring locations BR-10, BR-8 and BR-12.
- A possible void with no sample recovery was encountered at boring location BR-8 from elevation -35 to -42 feet NAVD88.

For detailed subsurface profiles encountered at each of the boring locations see the Report of SPT Borings for Structures sheets in the **Appendix**.

5.3 SPT Boring Results for SR 429 over Yankee Lake Road

In general, the SPT borings (BR-13 through BR-18) performed for the SR 429 Bridges over Yankee Lake Road encountered the generalized subsurface profile summarized in the following table:

Table 11CGeneralized Subsurface ProfileSR 429 over Yankee Lake Road

Lavar	Layer		Average	Typical
Layer Number	Elevation (ft. NAVD88)	Description	Average N-Value	Range of N-Values
Number	(IL. NAV DOO)		IN-Value	IN-Values
1	+56 to +5	Loose to dense fine sand, fine sand with silt and silty fine sand (SP, SP-SM, SM)	12	3 - 33
2	+5 to -3	Very loose to medium dense fine sand with silt (SP-SM) to silty fine sand (SM)	4	2 - 12
3	-3 to -10	Medium dense to dense fine sand with silt to silty fine sand (SP-SM, SM)	18	9 - 29
4	-10 to -20	Very loose to loose silty fine sand (SM), trace to abundant cemented sand and phosphate	4	W/H - 7
5	-20 to -52	Medium dense to very dense silty fine sand (SM), trace to some shell and phosphate	62	18 - 50/3"
6	-52 to -114	Medium dense to very dense weathered limestone, occasional cemented sand, shell and phosphate	68	16 - 50/3"

GEC Project No. 3520G

- Layer 1 included thin layers of loose to medium dense clayey fine sand (SC) at boring locations BR-13, BR-15 and BR-18.
- A 2.5 foot layer of firm fat clay (CH) was encountered at an elevation of -19.5 feet NAVD88 at boring location BR-17.
- A layer of dense weathered limestone was encountered in Layer 5 at boring location BR-15 from elevation -25 to -28 feet NAVD88.
- A very loose layer of fine sand with silt to silty fine sand (SP-SM, SM) or void was encountered at boring locations BR-14 and BR-16 from elevation -50 to -55 feet NAVD88.
- Loss of drilling fluid circulation occurred at every boring location, with the exception of BR-18, from elevation -45 to -55 feet NAVD88.

For detailed subsurface profiles encountered at each of the boring locations see the Report of SPT Borings for Structures sheets in the **Appendix**.

5.4 SPT Boring Results for SR 429 over Lake Markham Road

The SPT borings (BR-19 through BR-24) performed for the SR 429 Bridges over Lake Markham Road can be summarized into two different generalized profiles. The borings for the eastbound bridge (BR-19, BR-20 and BR-21) have a significantly different profile than the westbound bridge borings (BR-22, BR-23 and BR-24). The eastbound borings encountered the generalized subsurface profile summarized in the following table:

Table 11D Generalized Subsurface Profile SR 429 Eastbound over Lake Markham Road Bridge Borings BR-19, BR-20, BR-21

	Layer			Typical
Layer	Elevation		Average	Range of
Number	(ft. NAVD88)	Description	N-Value	N-Values
1	+38 to -30	Very loose to medium dense fine sand, fine sand with silt and silty fine sand (SP, SP-SM, SM)	9	1 - 23
2	-30 to -45	Medium dense to very dense fine sand with silt (SP-SM) to silty fine sand (SM) with intermixed layers of very dense weathered limestone	49	9 - 50/1"

GEC Project No. 3520G

	Layer			Typical
Layer	Elevation		Average	Range of
Number	(ft. NAVD88)	Description	N-Value	N-Values
3	-45 to -56	Very stiff to hard silt with sand (ML) and very dense weathered limestone	70	14 - 50/2"
4	-56 to -76	Very loose to very dense weathered limestone	23	2 - 57
5	-76 to -87	Dense to very dense weathered limestone	58	23 - 50/2"
6	-87 to -91	Medium dense weathered limestone	20	15 - 27
7	-91 to -107	Very dense weathered limestone	68	47 - 50/5"
8	-107 to -117	Medium dense weathered limestone	22	10 - 35

- In general, encountered soil layers at boring location BR-21 dropped in elevation in comparison to boring locations BR-19 and BR-20, suggesting past sinkhole activity near this boring location.
- 2 to 7.5 foot layers of very loose mucky fine sand (PT) (Organic Content = 24%) were encountered at boring location BR-21 between approximate elevation +32 and +12 feet NAVD88.
- Layer 3 was not encountered at boring location BR-19.
- Loss of drilling fluid circulation was encountered at boring location BR-19 at elevation -37 feet NAVD88 and at boring location BR-21 at elevations +27, -58 and -66 feet NAVD88.

The westbound borings at the SR 429 over Lake Markham Road bridge site encountered the generalized subsurface profile summarized in the following table:

Table 11E Generalized Subsurface Profile SR 429 Westbound over Lake Markham Road Bridge Borings BR-22, BR-23, BR-24

	Layer			Typical
Layer	Elevation		Average	Range of
Number	(ft. NAVD88)	Description	N-Value	N-Values
1	+36 to -70	Very loose to medium dense fine sand, fine sand with silt and silty fine sand (SP, SP-SM, SM)	10	1 - 22
2	-70 to -95	Very loose to medium dense weathered limestone with intermixed layers of very loose silty fine sand (SM), occasional trace shell and phosphate	21	1 - 50/3"

GEC Project No. 3520G

	Layer			Typical
Layer	Elevation		Average	Range of
Number	(ft. NAVD88)	Description	N-Value	N-Values
3	-95 to -105	Loose to dense fine sand with silt to silty fine sand (SP-SM, SM)	13	7 - 31
4	-105 to -110	Very soft to firm sandy fat to lean clay (CH, CL), trace phosphate, limestone and cemented sand	2	W/R - 5
5	-110 to -137	Very loose to loose fine sand with silt to silty fine sand (SP-SM, SM), trace clay and limestone	3	W/R - 9
6	-137 to -145	Very soft to stiff fat clay with sand (CH), trace shell, limestone and cemented sand	2	W/R - 7
7	-145 to -154	Very loose to medium dense fine sand with silt to silty fine sand (SP-SM, SM), trace limestone, phosphate and cemented sand	6	W/R - 16
8	-154 to -189	Dense to very dense weathered limestone, trace phosphate and cemented sand	70	27 - 50/1"

- In general, encountered soil layers at boring location BR-24 dropped in elevation in comparison to boring locations BR-22 and BR-23, suggesting past sinkhole activity near this boring location.
- A 2.5 foot layer of very soft muck (PT) (Organic Content = 44%) was encountered at boring location BR-22 at approximate elevation +11 feet NAVD88.
- 4 and 4.5 foot layers of very soft to soft muck to sandy muck (Organic Content = 36%) were encountered at boring location BR-24 at approximate elevations of +31 and +17 feet NAVD88, respectively.
- 2.5 and 3 foot layers of loose to medium dense mucky fine sand (PT) (Organic Content = 16%) were encountered at boring location BR-24 at approximate elevations of +13 and +6 feet NAVD88, respectively.
- Layers of sandy fat clay (CH) and clayey fine sand (SC) were encountered in Layer 1 at boring locations BR-22 and BR-23.
- A void was encountered at boring location BR-22 from elevation -78 to -85 feet NAVD88.
- Layers 2 and 4 were not encountered at boring location BR-24.
- A dense weathered limestone layer was encountered from elevation -112 to -136 feet NAVD88 at boring location BR-23.
- Loss of drilling fluid circulation occurred at boring location BR-22 at elevations -79 and -109 feet NAVD88 and at boring location BR-23 at elevation -128 feet NAVD88.

5.5 SPT Boring Results for SR 429 over Glade View Drive

In general, the SPT borings (BR-25 through BR-29 and TH-1058) performed for the SR 429 Bridges over Glade View Drive encountered the generalized subsurface profile summarized in the following table:

Table 11F Generalized Subsurface Profile SR 429 over Glade View Drive

	Layer			Typical
Layer	Elevation		Average	Range of
Number	(ft. NAVD88)	Description	N-Value	N-Values
1	+52 to +28	Loose to dense fine sand with silt to silty fine sand (SP-SM, SM)	13	4 - 30
2	+28 to 0	Very loose to medium dense fine sand with silt (SP-SM), silty fine sand (SM) and clayey fine sand (SC)	3	W/R - 17
3	0 to -40	Dense to very dense silty fine sand (SM) with cemented fine sand, trace phosphate and shell	78	16 - 50/3"
4	-40 to -80	Medium dense to very dense weathered limestone	74	12 - 50/1"

Notable exceptions to this generalized profile include:

- A layer of firm sandy fat clay was encountered at boring location BR-29 from elevation +7 to +5 feet NAVD88.
- At boring location BR-29, Layer 3 extended to elevation -75 feet NAVD88.
- At boring locations TH-1085 and BR-29 potential subsurface voids were encountered from approximate elevation -38 to -42 feet NAVD88.
- The sampler could not penetrate very dense material at boring location BR-28 from elevation -22 to -28 feet NAVD88.
- Loss of drilling fluid circulation occurred at boring locations TH-1058, BR-28 and BR-29 at approximate elevations of -40 to -45 feet NAVD88.
- A loss of drilling fluid circulation occurred at boring location BR-26 at elevation -3 feet NAVD88.

5.6 SPT Boring Results for SR 429 over Eastbound Frontage Road

In general, the SPT borings (BR-30A, BR-30B, BR-31A and BR-31B) performed for the SR 429 Bridges over the Eastbound Frontage Road encountered the generalized subsurface profile summarized in the following table:

Table 11G Generalized Subsurface Profile SR 429 over Eastbound Frontage Road

	Layer			Typical
Layer	Elevation		Average	Range of
Number	(ft. NAVD88)	Description	N-Value	N-Values
1	+64 to +28	Very loose to dense fine sand to fine sand with silt to silty fine sand (SP, SP-SM, SM)	13	1 - 34
2	+28 to +11	Layers of soft to stiff fat clay to fat clay with sand (CH), soft to stiff sandy elastic silt to elastic silt (MH) and loose to medium dense silty fine sand (SM), trace to some shell	5	2 - 11
3	+11 to +1	Very loose to very dense fine sand with silt to silty fine sand (SP-SM, SM), trace phosphate	34	2 - 50/6"
4	+1 to -7	Stiff to hard weathered limestone, trace to abundant phosphate and trace shell	29	8 - 50/4"
5	-7 to -14	Medium dense to dense fine sand with silt to silty fine sand to sandy silt (SP-SM, SM, ML), some to abundant phosphate and trace shell	22	9 - 37
6	-14 to -17	Very stiff fat clay to lean clay to sandy elastic silt (CH, CL, MH)	14	12 - 17
7	-17 to -53	Medium dense to very dense silty fine sand (SM), some to abundant cemented sand and phosphate and trace shell	150	20 - 50/0"

Notable exceptions to this generalized profile include:

- Boring location BR-30B did not encounter Layer 4.
- A 2.5 foot layer of stiff elastic silt (MH) was encountered at an elevation of +38.6 feet NAVD88 at boring location BR-31B.
- Loss of drilling fluid circulation occurred at every boring location between approximate elevations -8 and -23 feet NAVD88.

5.7 SPT Boring Results for SR 429 over Orange Avenue and Orange Boulevard

In general, the SPT borings (BR-30 through BR-41) performed for the SR 429 Bridges over Orange Avenue and Orange Boulevard encountered the generalized subsurface profile summarized in the following table:

Table 11H Generalized Subsurface Profile SR 429 over Orange Avenue and Orange Boulevard

	Layer			
Layer	Elevation		Average	Typical Range
Number	(ft. NAVD88)	Description	N-Value	of N-Values
1	+73 to +50	Very loose to medium dense fine sand, fine sand with silt and silty fine sand (SP, SP-SM, SM)	8	1 - 21
2	+50 to + 12	Loose to very dense fine sand, fine sand with silt and silty fine sand (SP, SP-SM, SM)	23	6 - 57
3	+12 to -5	Very loose to medium dense fine sand with silt to silty fine sand (SP-SM, SM) with intermixed layers of firm to stiff fat to lean clay (CH, CL), elastic silt to sandy elastic silt (MH), occasional trace shell	5	W/H - 14
4	-5 to -21	Intermixed layers of medium dense to very dense silty fine sand to clayey fine sand (SM, SC), medium dense to very dense cemented sand to weathered limestone, hard sandy fat clay to fat clay to lean clay (CH), hard silt with sand to sandy silt to sandy elastic silt (ML, MH), trace to abundant cemented sand, shell and phosphate	32	11 - 50/1.5"
5	-21 to -60	Medium dense to very dense silty fine sand (SM), trace to abundant shell, cemented sand and phosphate with occasional layers of cemented sand, phosphate and shell	162	17 - 50/0"

Notable exceptions to this generalized profile include:

- A 2.5-foot layer of medium dense mucky fine sand (Organic Content = 6%) was encountered at boring location BR-36 at approximate elevation +57 feet NAVD88.
- 2.5 to 5.5 foot layers of soft to hard elastic silt with sand to elastic silt to fat clay (MH, CH) were encountered at boring locations BR-32, BR-33, BR-34 and BR-37 between approximate elevations +31 to +21 feet NAVD88.

GEC Project No. 3520G

- A possible void with no sample recovery was encountered at boring location BR-33 from elevation +7 to -7 feet NAVD88.
- At boring locations BR-35 and BR-36 potential subsurface voids were encountered from approximate elevation -5 to -10 feet NAVD88.
- The sampler could not penetrate very dense material at boring locations BR-37, BR-38 and BR-41 encountered within Layers 4 and 5 between approximate elevations -12 and -37 feet NAVD88.
- Loss of drilling fluid circulation occurred at boring locations BR-33, BR-36, BR-37, BR-39 and BR-40 between approximate elevations +7 to -24 feet NAVD88.

5.8 Groundwater Levels

GEC measured groundwater levels at the boring locations 24-hours after the completion of the borings. The encountered, 24-hour stabilized groundwater levels at the SPT boring locations are summarized in the following **Table 12**.

Groundwater levels can vary seasonally and with changes in subsurface conditions between boring locations. Alterations in surface and/or subsurface drainage brought about by site development can also affect groundwater levels. *Therefore, groundwater depths measured at different times or at different locations on the site can be expected to vary from those measured by GEC during this investigation.*

For purposes of this report, estimated seasonal high groundwater levels are defined as groundwater levels that are anticipated at the end of the wet season during a "normal rainfall" year under current site conditions. We define a "normal rainfall" year as a year in which rainfall quantity and distribution were at or near historical averages.

GEC estimated seasonal high groundwater elevations at each boring location as summarized in the following table.

	Encountered	Estimated Seasonal	
	Groundwater	High Groundwater	
Bridge	Elevation Range	Elevation Range	
Site	(ft NAVD88)	(ft NAVD88)	
SR 429 over Longwood Markham Road	+39.0 to +41.8	+42.0 to +44.8	
SR 429 over Yankee Lake Road	+41.5 to +43.7	+44.5 to +46.7	
SR 429 over Lake Markham Road	+30.5 to +31.5	+33.5 to +34.5	
SR 429 over Glade View Drive	+39.0 to +40.1	+42.0 to +43.1	
SR 429 over EB Frontage Road	+39.7 to +51.1	+56.2 to +59.5	
SR 429 over Orange Ave. & Orange Blvd.	+60.1 to +67.5	+65.5 to +70.1	

Table 12 Summary of Encountered and Estimated Seasonal High Groundwater Levels

The encountered and estimated seasonal high groundwater levels are depicted adjacent to the boring profiles on the Report of SPT Borings for Structures sheets in the **Appendix**.

6.0 ANALYSES AND RECOMMENDATIONS

As a part of the Bridge Development Report (BDR), GEC performed an evaluation of foundation alternatives that included shallow spread footings, drilled shafts, steel pipe piles, steel H-piles and driven precast prestressed concrete (PPC) piles. The results of these foundation analyses are included in our Preliminary Geotechnical Engineering Report for Bridge Development Report, dated July 11, 2014.

We understand that 24-inch Precast Prestressed Concrete (PPC) piles have been selected as the preferred foundation systems for the Longwood Markham Road, Yankee Lake Road, Glade View Drive, Eastbound Frontage Road and Orange Ave./Orange Blvd. bridge sites. In addition, we understand that 24-inch steel pipe piles have been selected as the preferred foundation system for the Lake Markham Road bridge site. The following report sections provide analysis and recommendations for the selected foundation systems.

6.1 Axial Load Analysis – Steel Pipe Piles

GEC analyzed axial capacity for 24-inch steel pipe piles for the Lake Markham Road Bridge using the FDOT computer program FB-Deep Version 2.04, which is based on FDOT Research Bulletin RB-121. Graphs of Davisson Pile Capacity vs. Pile Tip Elevation for this pile type are included in the **Appendix**.

GEC Project No. 3520G

Based upon the generated Davisson Pile Capacity vs. Pile Tip Elevation curves and pile loading conditions provided by IDA, we recommend the following pile design parameters for 24-inch steel pipe piles at the Lake Markham Road Bridge site:

			Nominal	Approximate	Anticipated	³ Minimum	Required	Anticipated
			Bearing	Pile Cut Off	Pile Tip	Pile Tip	Preform	Production
¹ Bridge		Boring	Resistance	Elevation	Elevation	Elevation	Elevation	Pile Length
No.	² Bent	No.	(tons)	(ft NAVD88)	(ft NAVD88)	(ft NAVD88)	(ft NAVD88)	(ft)
3	EB-1 (WB)	BR-22	256	+67.2	-155	-145	N/A	222
	P-2 (WB)	BR-23	238	+42.0	-165	-155	N/A	207
	EB-3 (WB)	BR-24	256	+66.1	-111	0	N/A	177
	EB-1 (EB)	BR-19	251	+69.5	-47	-30	N/A	117
	P-2 (EB)	BR-20	242	+42.0	-72	-35	N/A	114
	EB-3 (EB)	BR-21	251	+68.3	-96	-75	N/A	164

Table 13 Lake Markham Road 24-Inch Steel Pipe Pile Design Parameters

1. 3 = SR 429 over Lake Markham Road

2. EB-# = End Bent No.; P-# = Pier No.; (EB) = Eastbound; (WB); Westbound.

3. Minimum pile tip elevations required to limit pile settlement.

...splicing of piles will be required at the Lake Markham Road Bridge site... Based on the anticipated pile cut off elevations and pile tip elevations summarized in **Table 13** above, pile production lengths are anticipated to range from 117 to 222 feet. Based on the anticipated pile lengths, splicing of piles will be

required at the Lake Markham Road Bridge site and should be performed in accordance with Section 455-8.3 of the FDOT Standard Specifications for Road and Bridge Construction.

The substructure environmental classification for steel substructure is extremely aggressive at the Lake Markham Road bridge site, which must be considered with the use of steel sections. Additional sacrificial steel thickness should be specified in accordance with FDOT Structures Design Guidelines.

Elevations and capacities recommended in this report are for individual piles. The analyses and recommendations apply for piles spaced at minimum distances of three pile widths as measured from center to center. Group reductions would be required for more closely spaced piles.

Minimum pile tip elevations are recommended to penetrate the soft soil strata encountered at the proposed Lake Markham Road bridge site. The following note should be added to the Pile Data Table sheets for this bridge in the project plan set:

• Minimum tip elevation is required to penetrate soft soil strata and limit pile settlement.

...we recommend a greater than usual number of test piles due to the highly variable soil conditions. We recommend a test pile program be established for the proposed structures. The test piles should be dynamically monitored in accordance with FDOT Specification 455. In addition, we recommend a greater than usual number of test piles due to the highly variable soil conditions.

The Pile Data Table for the 24-inch steel pipe piles is included in the **Appendix**. Factored design loads listed in the Pile Data Table assume a Soil Resistance Factor of 0.75.

6.2 Axial Load Analysis - Driven PPC Piles

GEC analyzed axial capacity for 24-inch concrete piles using the FDOT computer program FB-Deep Version 2.04. Graphs of Davisson Pile Capacity vs. Pile Tip Elevation for the 24-inch concrete piles are included in the **Appendix**. For the Orange Avenue/Orange Boulevard bridge site the Davisson Pile Capacity graphs reflect reduction in capacity due to recommended preform requirements.

Based upon the generated Davisson Pile Capacity vs. Pile Tip Elevation curves and pile loading conditions provided by AECOM and IDA, we recommend the following pile design parameters for 24-inch concrete piles:

			Nominal Bearing	Approximate Pile Cut Off	Anticipated Pile Tip	³ Minimum Pile Tip	Required Preform	Anticipated Production
¹ Bridge		Boring	Resistance	Elevation	Elevation	Elevation	Elevation	Pile Length
No.	² Bent	No.	(tons)	(ft NAVD88)	(ft NAVD88)	(ft NAVD88)	(ft NAVD88)	(ft)
	EB-1 (WB)	BR-10	295	+72.9	-36	-35	N/A	109
1	P-2 (WB)	BR-10 BR-11	262	+52.0	-57	-35	N/A	109
	EB-3 (WB)	BR-12	295	+77.3	-26	-25	N/A	103
	EB-1 (EB)	BR-7	295	+72.8	-13	-5	N/A	86
	P-2 (EB)	BR-8	262	+52.0	-56	-55	N/A	108
	EB-3 (EB)	BR-9	295	+77.2	-25	-15	N/A	102
	EB-1 (WB)	BR-16	339	+78.0	-28	-15	, N/A	106
	P-2 (WB)	BR-17	219	+50.5	-34	-25	N/A	85
	EB-3 (WB)	BR-18	339	+73.1	-24	-17	, N/A	97
2	EB-1 (EB)	BR-13	339	+78.0	-22	-15	N/A	100
	P-2 (EB)	BR-14	219	+52.5	-19	-18	N/A	72
	EB-3 (EB)	BR-15	339	+73.1	-34	-20	N/A	107
4	EB-1 (WB)	BR-27	272	+70.2	-14	0	N/A	84
	P-2 (WB)	BR-28	259	+44.5	-11	0	N/A	56
	EB-3 (WB)	BR-29	272	+71.8	-14	0	N/A	86
	EB-1 (EB)	BR-25	274	+68.0	-11	0	N/A	79
	P-2 (EB)	TH-1058	252	+44.5	-12	0	N/A	57
	EB-3 (EB)	BR-26	274	+69.6	-23	0	N/A	93
	EB-1 (WB)	BR-30A	410	+81.1	-21	-5	N/A	102
_	EB-2 (WB)	BR-31A	410	+81.6	-23	-15	N/A	105
5	EB-1 (EB)	BR-30B	379	+79.7	-22	-10	N/A	102
	EB-2 (EB)	BR-31B	379	+80.5	-17	-15	N/A	98
6	EB-1 (WB)	BR-37	252	+91.3	-16	-14	+20	107
	P-2 (WB)	BR-38	276	+64.5	-25	-24	+20	90
	P-3 (WB)	BR-39	288	+64.5	-25	-8	+44	90
	P-4 (WB)	BR-40	292	+66.0	-23	-14	+29	89
	EB-5 (WB)	BR-41	303	+93.3	-23	0	+35	116
	EB-1 (EB)	BR-32	288	+89.7	-19	+3	+20	109
	P-2 (EB)	BR-33	272	+61.5	-14	-7	+50	76
	P-3 (EB)	BR-34	271	+64.0	-15	0	+28	79
	P-4 (EB)	BR-35	302	+66.5	-24	-10	+27	91
	EB-5 (EB)	BR-36	290	+92.3	-21	-20	+27	114

Table 1424-inch PPC Pile Design Parameters

1 = SR 429 over Longwood Markham Road; 2 = SR 429 over Yankee Lake Road; 3 = SR 429 over Lake Markham Road; 4 = SR 429 over Glade View Drive; 5 = SR 429 over Eastbound Frontage Road; 6 = SR 429 over Orange Ave. & Orange Blvd.

2. EB-# = End Bent No.; P-# = Pier No.; (EB) = Eastbound; (WB); Westbound.

3. Minimum pile tip elevations required to limit pile settlement.

GEC Project No. 3520G

Based on the anticipated pile cut off elevations and pile tip elevations summarized in **Table 14** above, pile production lengths are anticipated to range from 56 to 116 feet. Therefore, pile splicing should not be required to achieve the recommended maximum nominal bearing capacities at the bridge locations summarized in **Table 14**.

Elevations and capacities recommended in this report are for individual piles. The analyses and recommendations apply for piles spaced at minimum distances of three pile widths as measured from center to center. Group reductions would be required for more closely spaced piles.

Minimum pile tip elevations are recommended to penetrate the soft soil strata encountered at the proposed bridge sites. The following note should be added to the Pile Data Table sheets in the project plan set:

• Minimum tip elevation is required to penetrate soft soil strata and limit pile settlement.

...at the Orange Avenue/Orange Boulevard bridge site, a note alerting the contractor that preforming will be required should be added to the plans. Since intermittent dense to very dense near-surface layers are present at the Orange Avenue/Orange Boulevard bridge site, a note alerting the contractor that preforming will be required should be added to the plans. Required preform elevations are presented on the **Pile Data Table** in the **Appendix**.

We recommend a test pile program be established for the proposed structures. The test piles should be dynamically monitored in accordance with FDOT Specification 455.

The Pile Data Tables for the 24-inch square PPC piles are included in the **Appendix**. Factored design loads listed in the Pile Data Tables assume a Soil Resistance Factor of 0.75.

6.3 Downdrag Settlement Considerations

Based on project plans, embankment fill will be placed at the bridge abutments to heights of up to 30 to 38 feet above existing ground surface. This fill will need to be placed after the abutment piles are driven. Therefore, soil settlement caused by fill loads at the end bent pile locations could generate downdrag loads on the piles.

As previously described, the soil profiles encountered at the boring locations are composed primarily of loose to medium dense fine sands with occasional, thin layers of soft to stiff sandy fat clay to elastic silt. Due to the cohesionless, granular nature of the majority of the subsurface profile, settlement of the sand profile caused by placement of the new embankment fill will occur

...we do not anticipate that downdrag will be a significant factor in pile performance at the majority of the proposed bridge sites...

...settlement of the proposed embankment at the Lake Markham Road bridge site... is discussed under separate cover in our Report of Geotechnical Engineering Investigation for Muck Surcharge. concurrently during embankment construction. Once the embankment fill is complete, subsoil settlement will essentially cease and the superstructure can be constructed with negligible post-construction abutment fill settlement. Therefore, we do not anticipate that downdrag will be a significant factor in pile performance at the majority of the proposed bridge sites.

However, at the Lake Markham Road bridge site layers of very soft to soft sandy muck to muck (PT) were encountered at elevations ranging from +32 to +5 feet NAVD88. High primary settlements can be expected for embankments constructed on the very weak compressible organic soils. Surcharging, or presettling, of the roadway embankment can be conducted to make roadway and bridge construction feasible and limit longterm embankment settlement at the bridge end bents. With

the application of a surcharge program at the Lake Markham Road bridge site, the total long-term settlements after application of the bridge structure loads can be significantly reduced such that the pile foundation proposed for this structure can be designed and installed with acceptable foundation settlement. GEC performed an evaluation of settlement of the proposed embankment at the Lake Markham Road bridge site, which is discussed under separate cover in our Report of Geotechnical Engineering Investigation for Muck Surcharge.

With the application of the surcharge program at the Lake Markham Road bridge site, the total long-term settlements after removal of the surcharge and construction of the roadway embankment and Lake Markham Road Bridge are estimated to be less than 1 inch. Based on this relatively minor post-construction abutment fill settlement, the pile foundation proposed for this structure can be designed and installed with acceptable foundation settlement. This recommendation is dependent on the application of the recommended surcharge.

6.4 Noise and Vibration Considerations

Due to the presence of gas lines and residential structures in the surrounding area, consideration should be given to the noise and vibrations that will be generated from the use of an impact hammer to drive the piles at the proposed bridge sites. Based on the proximity of the existing structures to the proposed bridge sites, as detailed in **Section 1.0**, it is our opinion that vibration from pile driving will not damage the nearby structures. However, vibrations will likely be perceptible to occupants of the structures.

GEC performed a field reconnaissance of existing structures along the project alignment on May 4, 2016. Based on the results of that field reconnaissance and coordination with AECOM, GEC has developed a list of recommended structures that were identified outside of the distances specified in Article 108-2 of the FDOT Specifications that we recommend monitoring. Protection of existing structures should be performed in accordance with Section 108 of the FDOT Specifications. Please refer to the Summary of Monitor Existing Structures table in the **Appendix**.

Gas utility owners should be notified of pile driving operations and should be present to monitor gas pipelines during pile driving operations.

6.5 FB-Multi Pier Soil Parameters

GEC generated soil parameters based on encountered soil conditions at our boring locations for the structural engineer's use in bridge foundation design using the computer program, FB-Multi Pier. The recommend FB-Multi Pier soil parameters are tabulated in the **Appendix**.

7.0 SINKHOLE RISK

...the eastern portion of the project alignment would be considered to exhibit a high risk of sinkhole activity. The western portion of the project alignment, including the Longwood Markham Road and Yankee Lake Road bridge sites is classified by the USGS as an area of no to moderate recharge. Since recharge corresponds to sinkhole risk on a regional basis, the western portion of the project alignment would be

considered to exhibit a low to moderate risk of sinkhole activity. However, the eastern portion of the project alignment, including the Lake Markham Road, Glade View Drive, Eastbound Frontage Road and Orange Boulevard/Wayside Drive bridge sites is classified by the USGS as an area of high recharge. Therefore, the eastern portion of the project alignment would be considered to exhibit a high risk of sinkhole activity.

GEC Project No. 3520G

Strong indicators of ongoing sinkhole formation including soil voids, extensive loose zones and drilling fluid losses in the upper soils were encountered at the bridge boring locations. The USGS maps also indicate the Floridan aquifer potentiometric surface at an elevation ranging from +19 to +23 feet NAVD88 in the site vicinity. Based on the water table elevation ranging from +30.5 to +67.5 feet NAVD88, a downward hydraulic gradient may exist at the bridge sites. When a downward hydraulic gradient is present, it can promote soil raveling associated with sinkhole activity. Strong indicators of ongoing sinkhole formation including soil voids,

extensive loose zones and drilling fluid losses in the upper soils were encountered at the bridge boring locations.

In addition to reviewing readily available sources of geological information to make a qualitative evaluation of sinkhole risk, a further evaluation can be made by performing deep borings at a given site. The purpose of the borings is to evaluate the thickness and consistency of the upper surface of the Hawthorn formation and overlying sands to determine whether raveled soils are present. Obvious indicators of ongoing raveling and potential future sinkhole activity include extensive zones of very soft or loose soils, and losses of drilling fluid circulation. Very soft or loose soil zones and/or significant drilling fluid circulation losses, that typically require installation of borehole casing to restore circulation, are generally indicators that the confining layer has been fully or partially breached at the depth at which losses occur. Evaluation of sinkhole risk by deep borings is typically performed for significant structures and in most cases borings performed for design of significant structures are drilled to a depth such that the borings can also be utilized in evaluation of sinkhole risk. However, evaluation of sinkhole risk by deep borings is not usually performed for horizontal facilities such as highway embankments. It is generally considered that the cost of performing such an evaluation for that type of facility would not be cost-effective when compared to the benefit derived.

Based on the results of this study, it does not appear that the cost of additional investigations for sinkhole risk evaluation would be warranted unless shallow foundations are the selected foundation alternative. GEC does not recommend shallow foundations due to the elevated sinkhole risk.

Supporting the bridges on deep pile foundations provides the most positive mitigation of sinkhole risk to the structure.

GEC Project No. 3520G

Final Report of Geotechnical Engineering Investigation for Bridge Structures Wekiva Parkway (SR 429) – Section 7A

8.0 USE OF THIS REPORT

GEC has prepared this report for the exclusive use of our client, AECOM and FDOT, and for specific application to our client's project. GEC will not be held responsible for any other party's interpretation or use of this report's subsurface data or engineering analysis without our written authorization.

The sole purpose of the borings performed by GEC at this site was to obtain indications of subsurface conditions as part of a geotechnical exploration program. GEC has not subjected any soil samples to analysis for contaminants.

GEC has strived to provide the services described in this report in a manner consistent with that level of care and skill ordinarily exercised by members of our profession currently practicing in Central Florida. No other representation is made or implied in this document.

The conclusions or recommendations of this report should be disregarded if the nature, design, or location of the facilities is changed. If such changes are contemplated, GEC should be retained to review the new plans to assess the applicability of this report in light of proposed changes.

APPENDIX

PILE DATA TABLE & DAVISSON PILE CAPACITY CURVES

SR 429 OVER LONGWOOD MARKHAM ROAD

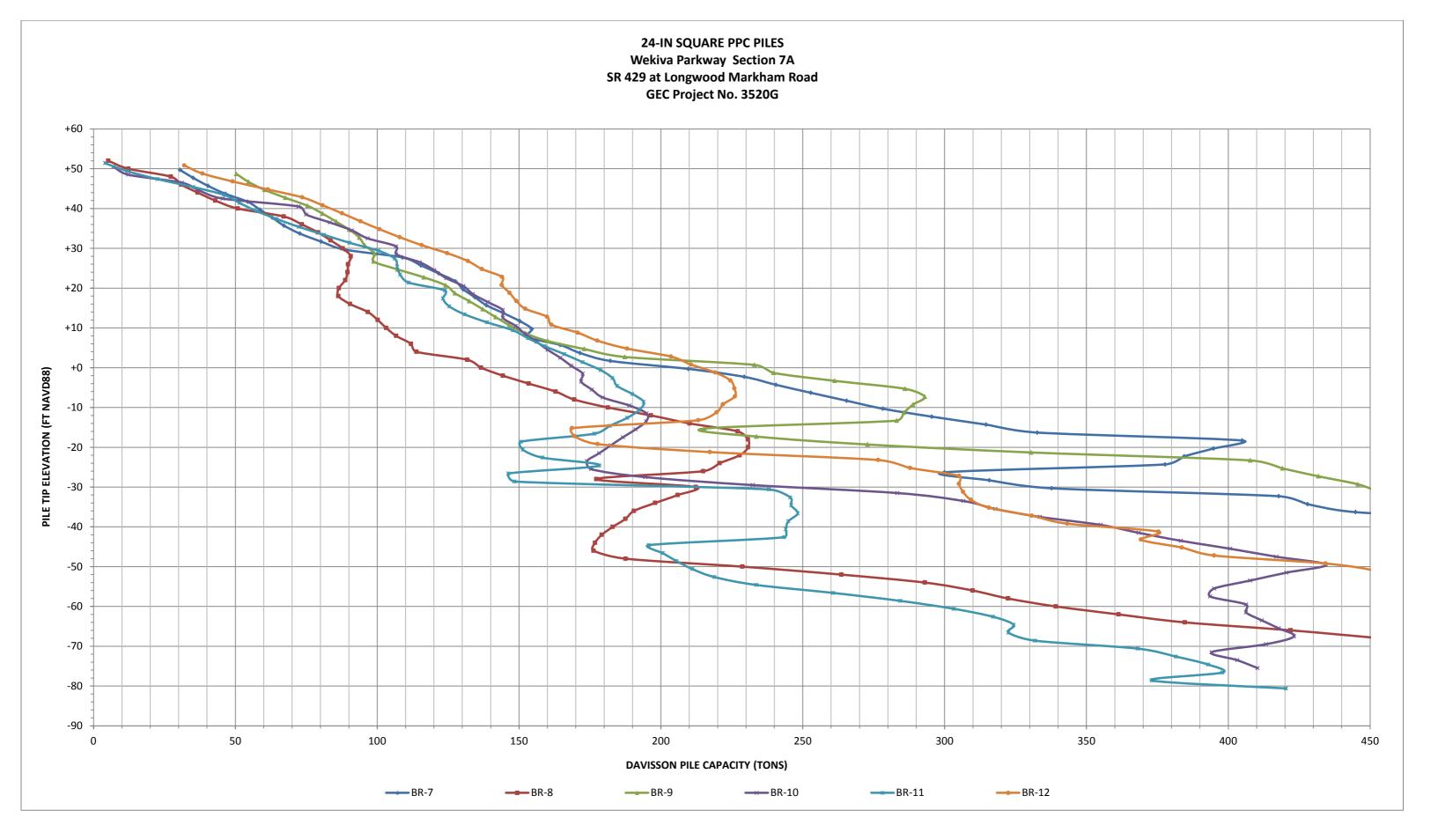
Pile Data Tables Wekiva Parkway (SR 429) – Section 7A FPID No. 240200-2-52-01 GEC Project No. 3520G

SR 429 over Longwood-Markham Road 24-inch Square PPC Pile Design Table

	PILE DATA TABLE													
		Installation Criteria									Design Cr	iteria		

	PPC		Nominal	***	**		Required	Factored				100-Year	Long-Term	Soil
	Pile	*	Uplift	Min. Tip	Test Pile	Required Jet	Preform	Design	Down	Total Scour	Net Scour	Scour	Scour	Resistance
Bent	Size	NBR	Resistance	Elevation	Length	Elevation	Elevation	Load	Drag	Resistance	Resistance	Elevation	Elevation	Factor
No.	(in)	(tons)	(tons)	(ft NAVD88)	(ft)	(ft NAVD88)	(ft NAVD88)	(tons)	(tons)	(tons)	(tons)	(ft. NAVD88)	(ft. NAVD88)	φ
EB-1 (WB)	24	295	N/A	-35	120	N/A	N/A	221	N/A	N/A	N/A	N/A	N/A	0.75
P-2 (WB)	24	262	N/A	-35	120	N/A	N/A	196	N/A	N/A	N/A	N/A	N/A	0.75
EB-3 (WB)	24	295	N/A	-25	120	N/A	N/A	221	N/A	N/A	N/A	N/A	N/A	0.75
EB-1 (EB)	24	295	N/A	-5	105	N/A	N/A	221	N/A	N/A	N/A	N/A	N/A	0.75
P-2 (EB)	24	262	N/A	-55	120	N/A	N/A	196	N/A	N/A	N/A	N/A	N/A	0.75
EB-3 (EB)	24	295	N/A	-15	120	N/A	N/A	221	N/A	N/A	N/A	N/A	N/A	0.75

Notes:


* Recommended Nominal Bearing Resistance: NBR > Factored Design Load + Net Scour + Downdrag

ø

** Test pile locations shown on plans.

*** All piles shall be dynamically monitored during installation in accordance with Section 455-5.13 of the Specifications.

**** Minimum tip elevation is required to penetrate soft soil strata and limit pile settlement.

PILE DATA TABLE & DAVISSON PILE CAPACITY CURVES

SR 429 OVER YANKEE LAKE ROAD

Pile Data Tables Wekiva Parkway (SR 429) – Section 7A FPID No. 240200-2-52-01 GEC Project No. 3520G

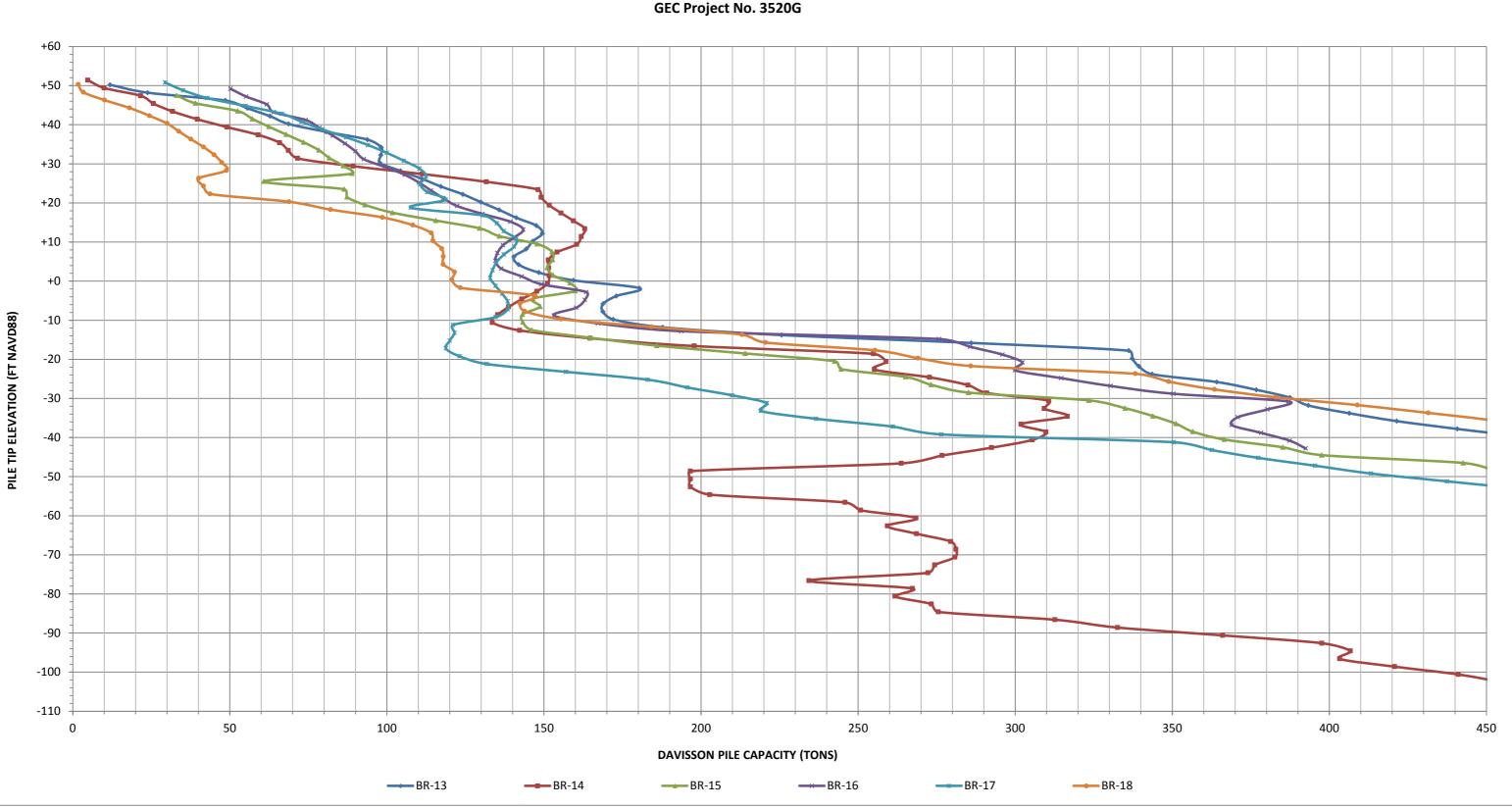
SR 429 over Yankee Lake Road 24-inch Square PPC Pile Design Table

	PILE DATA TABLE													
		Installation Criteria									Design Cr	iteria		

	PPC		Nominal	****	**		Required	Factored				100-Year	Long-Term	Soil
	Pile	*	Uplift	Min. Tip	Test Pile	Required Jet	Preform	Design	Down	Total Scour	Net Scour	Scour	Scour	Resistance
Bent	Size	NBR	Resistance	Elevation	Length	Elevation	Elevation	Load	Drag	Resistance	Resistance	Elevation	Elevation	Factor
No.	(in)	(tons)	(tons)	(ft NAVD88)	(ft)	(ft NAVD88)	(ft NAVD88)	(tons)	(tons)	(tons)	(tons)	(ft. NAVD88)	(ft. NAVD88)	φ
EB-1 (WB)	24	339	N/A	-15	120	N/A	N/A	254	N/A	N/A	N/A	N/A	N/A	0.75
P-2 (WB)	24	219	N/A	-25	100	N/A	N/A	164	N/A	N/A	N/A	N/A	N/A	0.75
EB-3 (WB)	24	339	N/A	-17	115	N/A	N/A	254	N/A	N/A	N/A	N/A	N/A	0.75
EB-1 (EB)	24	339	N/A	-15	115	N/A	N/A	254	N/A	N/A	N/A	N/A	N/A	0.75
P-2 (EB)	24	219	N/A	-18	90	N/A	N/A	164	N/A	N/A	N/A	N/A	N/A	0.75
EB-3 (EB)	24	339	N/A	-20	120	N/A	N/A	254	N/A	N/A	N/A	N/A	N/A	0.75

Notes:

* Recommended Nominal Bearing Resistance: NBR ≥ <u>Factored Design Load + Net Scour + Downdrag</u>


ø

** Test pile locations shown on plans.

*** All piles shall be dynamically monitored during installation in accordance with Section 455-5.13 of the Specifications.

**** Minimum tip elevation is required to penetrate soft soil strata and limit pile settlement.

24-IN SQUARE PPC PILES Wekiva Parkway Section 7A SR 429 at Yankee Lake Road GEC Project No. 3520G

PILE DATA TABLE & DAVISSON PILE CAPACITY CURVES

SR 429 OVER LAKE MARKHAM ROAD

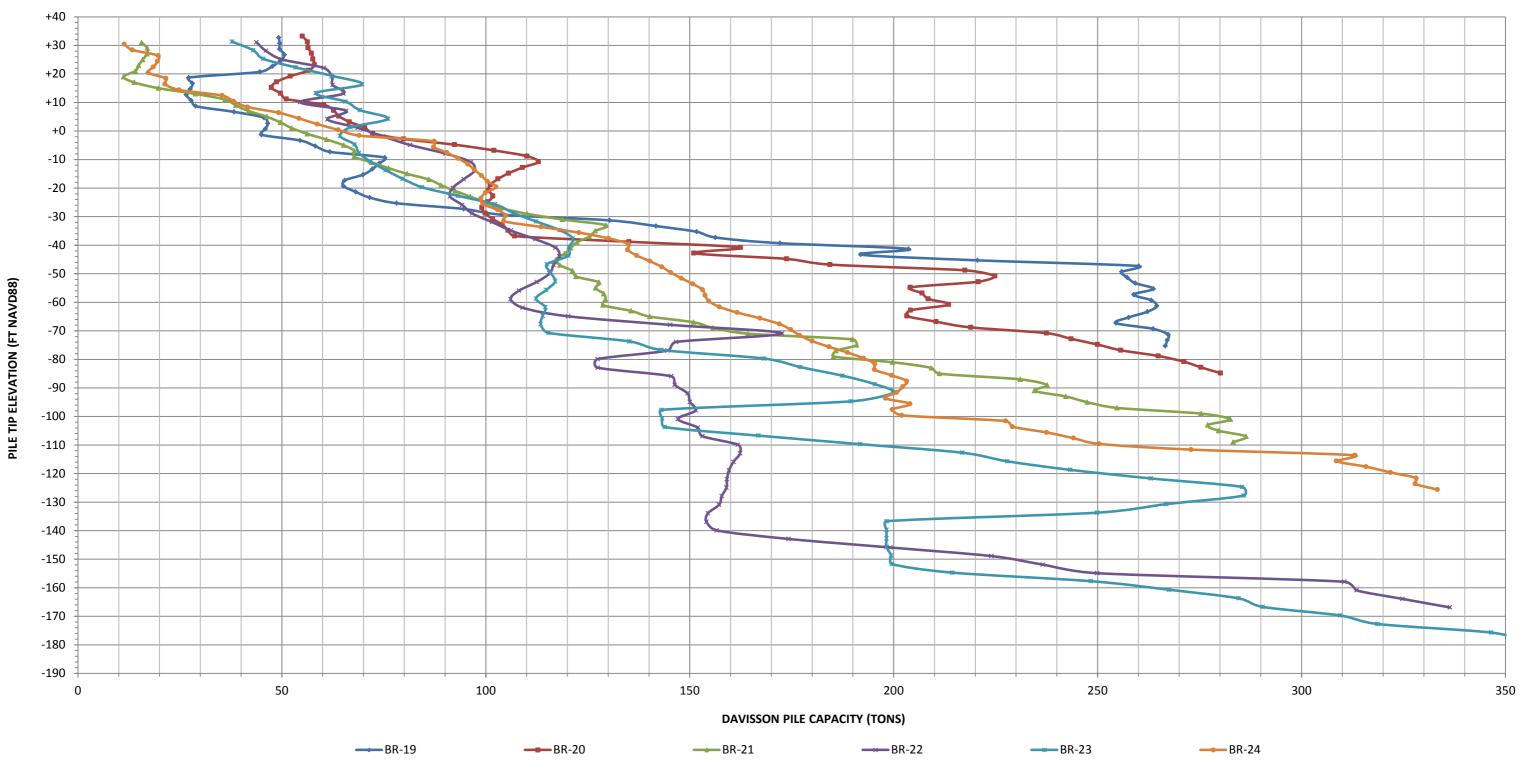
Pile Data Tables Wekiva Parkway (SR 429) – Section 7A FPID No. 240200-2-52-01 GEC Project No. 3520G

SR 429 over Lake Markham Road 24-inch Steel Pipe Pile Design Table

	PILE DATA TABLE													
		Installation Criteria									Design Cr	iteria		
	Steel													***
	Pipe		Nominal	****	**		Required	Factored				100-Year	Long-Term	Soil
	Pile	*	Uplift	Min. Tip	Test Pile	Required Jet	Preform	Design	Down	Total Scour	Net Scour	Scour	Scour	Resistance
Bent	Size	NBR	Resistance	Elevation	Length	Elevation	Elevation	Load	Drag	Resistance	Resistance	Elevation	Elevation	Factor
No.	(in)	(tons)	(tons)	(ft NAVD88)	(ft)	(ft NAVD88)	(ft NAVD88)	(tons)	(tons)	(tons)	(tons)	(ft. NAVD88)	(ft. NAVD88)	φ
EB-1 (WB)	24	256	N/A	-145	240	N/A	N/A	192	N/A	N/A	N/A	N/A	N/A	0.75
P-2 (WB)	24	238	N/A	-155	225	N/A	N/A	178	N/A	N/A	N/A	N/A	N/A	0.75
EB-3 (WB)	24	256	N/A	0	195	N/A	N/A	192	N/A	N/A	N/A	N/A	N/A	0.75
EB-1 (EB)	24	251	N/A	-30	135	N/A	N/A	188	N/A	N/A	N/A	N/A	N/A	0.75
P-2 (EB)	24	242	N/A	-35	130	N/A	N/A	181	N/A	N/A	N/A	N/A	N/A	0.75
EB-3 (EB)	24	251	N/A	-75	180	N/A	N/A	188	N/A	N/A	N/A	N/A	N/A	0.75

Notes:

* Recommended Nominal Bearing Resistance: NBR > Factored Design Load + Net Scour + Downdrag


ø

** Test pile locations shown on plans.

*** All piles shall be dynamically monitored during installation in accordance with Section 455-5.13 of the Specifications.

**** Minimum tip elevation is required to penetrate soft soil strata and limit pile settlement.

24 - IN STEEL PIPE PILES Wekiva Parkway Section 7A SR 429 at Lake Markham Road GEC Project No. 3520G

PILE DATA TABLE & DAVISSON PILE CAPACITY CURVES

SR 429 OVER GLADE VIEW DRIVE

Pile Data Tables Wekiva Parkway (SR 429) – Section 7A FPID No. 240200-2-52-01 GEC Project No. 3520G

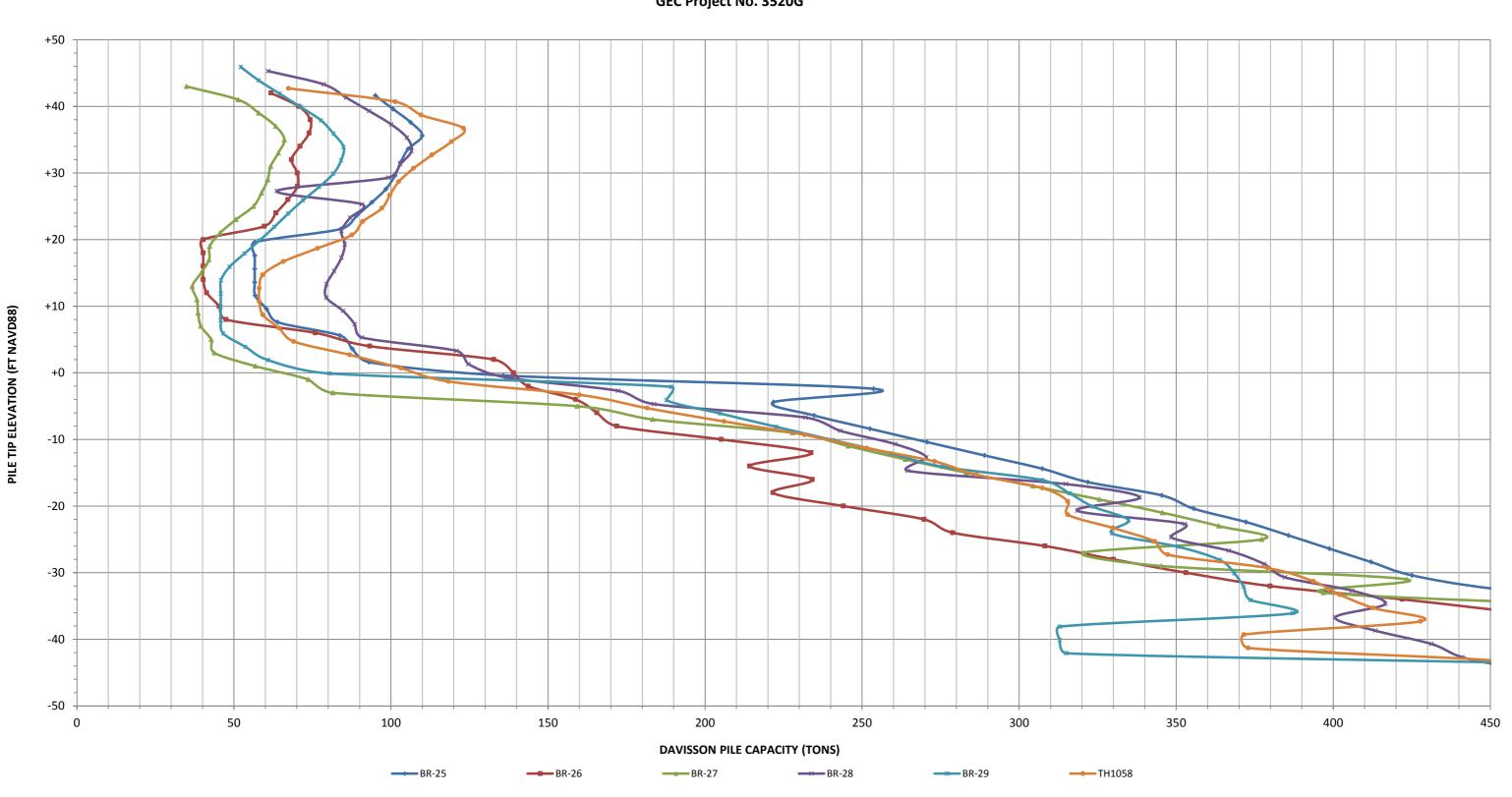
SR 429 over Glade View Drive 24-inch Square PPC Pile Design Table

	PILE DATA TABLE													
		Installation Criteria									Design Cr	iteria		

	PPC		Nominal	****	**		Required	Factored				100-Year	Long-Term	Soil
	Pile	*	Uplift	Min. Tip	Test Pile	Required Jet	Preform	Design	Down	Total Scour	Net Scour	Scour	Scour	Resistance
Bent	Size	NBR	Resistance	Elevation	Length	Elevation	Elevation	Load	Drag	Resistance	Resistance	Elevation	Elevation	Factor
No.	(in)	(tons)	(tons)	(ft NAVD88)	(ft)	(ft NAVD88)	(ft NAVD88)	(tons)	(tons)	(tons)	(tons)	(ft. NAVD88)	(ft. NAVD88)	φ
EB-1 (WB)	24	272	N/A	0	100	N/A	N/A	204	N/A	N/A	N/A	N/A	N/A	0.75
P-2 (WB)	24	259	N/A	0	75	N/A	N/A	194	N/A	N/A	N/A	N/A	N/A	0.75
EB-3 (WB)	24	272	N/A	0	105	N/A	N/A	204	N/A	N/A	N/A	N/A	N/A	0.75
EB-1 (EB)	24	274	N/A	0	95	N/A	N/A	205	N/A	N/A	N/A	N/A	N/A	0.75
P-2 (EB)	24	252	N/A	0	75	N/A	N/A	189	N/A	N/A	N/A	N/A	N/A	0.75
EB-3 (EB)	24	274	N/A	0	110	N/A	N/A	205	N/A	N/A	N/A	N/A	N/A	0.75

Notes:

* Recommended Nominal Bearing Resistance: NBR ≥ <u>Factored Design Load + Net Scour + Downdrag</u>


ø

** Test pile locations shown on plans.

*** All piles shall be dynamically monitored during installation in accordance with Section 455-5.13 of the Specifications.

**** Minimum tip elevation is required to penetrate soft soil strata and limit pile settlement.

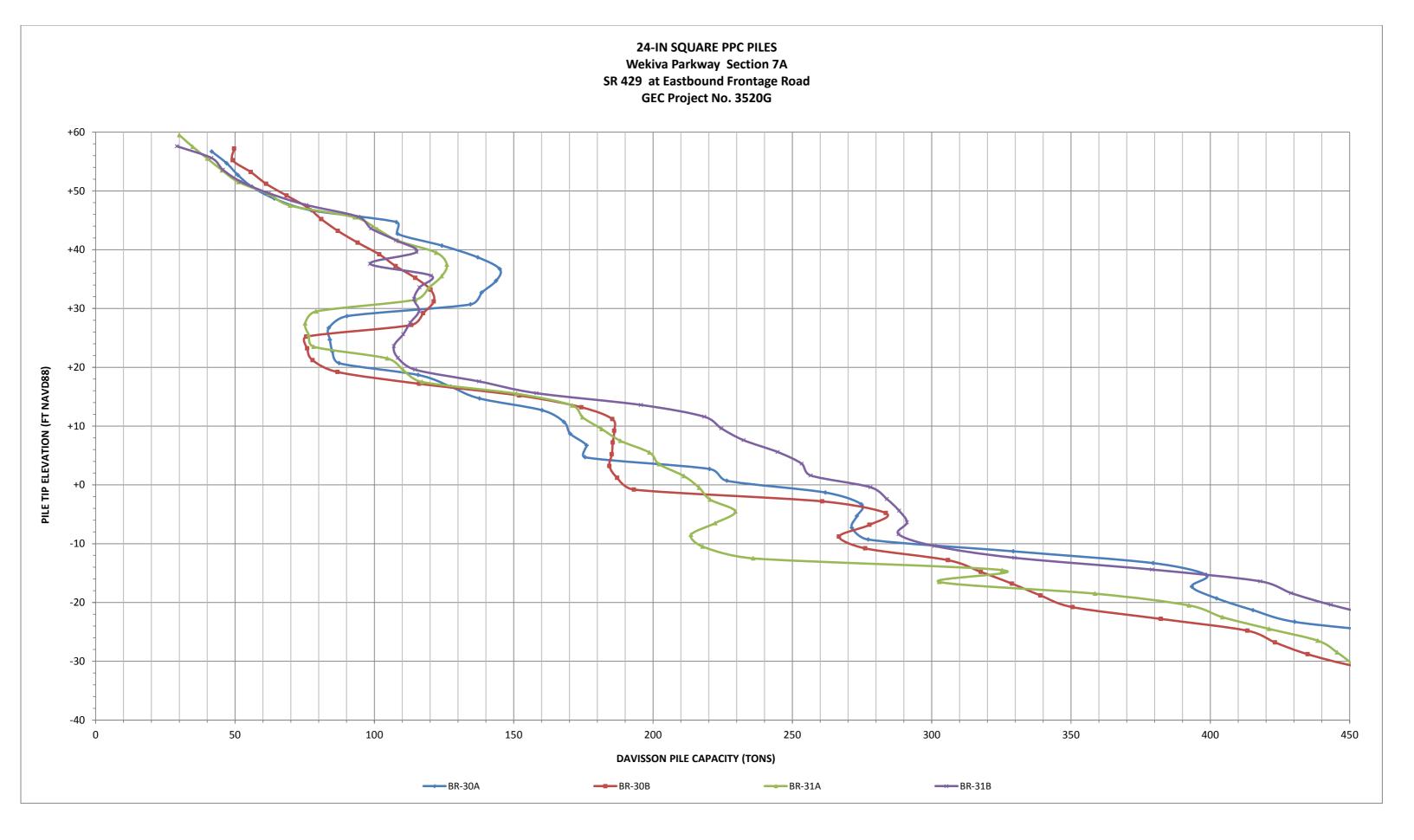
24-IN SQUARE PPC PILES Wekiva Parkway Section 7A SR 429 at Glade View Drive GEC Project No. 3520G

PILE DATA TABLE & DAVISSON PILE CAPACITY CURVES

SR 429 OVER EASTBOUND FRONTAGE ROAD

Pile Data Tables Wekiva Parkway (SR 429) – Section 7A FPID No. 240200-2-52-01 GEC Project No. 3520G

SR 429 over Eastbound Frontage Road 24-inch Square PPC Pile Design Table


	PILE DATA TABLE													
		Installation Criteria									Design Cr	iteria		

	PPC		Nominal	****	**		Required	Factored				100-Year	Long-Term	Soil
	Pile	*	Uplift	Min. Tip	Test Pile	Required Jet	Preform	Design	Down	Total Scour	Net Scour	Scour	Scour	Resistance
Bent	Size	NBR	Resistance	Elevation	Length	Elevation	Elevation	Load	Drag	Resistance	Resistance	Elevation	Elevation	Factor
No.	(in)	(tons)	(tons)	(ft NAVD88)	(ft)	(ft NAVD88)	(ft NAVD88)	(tons)	(tons)	(tons)	(tons)	(ft. NAVD88)	(ft. NAVD88)	φ
EB-1 (WB)	24	410	N/A	-5	120	N/A	N/A	307	N/A	N/A	N/A	N/A	N/A	0.75
EB-2 (WB)	24	410	N/A	-15	120	N/A	N/A	307	N/A	N/A	N/A	N/A	N/A	0.75
EB-1 (EB)	24	379	N/A	-10	120	N/A	N/A	284	N/A	N/A	N/A	N/A	N/A	0.75
EB-2 (EB)	24	379	N/A	-15	120	N/A	N/A	284	N/A	N/A	N/A	N/A	N/A	0.75

Notes:

* Recommended Nominal Bearing Resistance: NBR ≥ Factored Design Load + Net Scour + Downdrag

φ

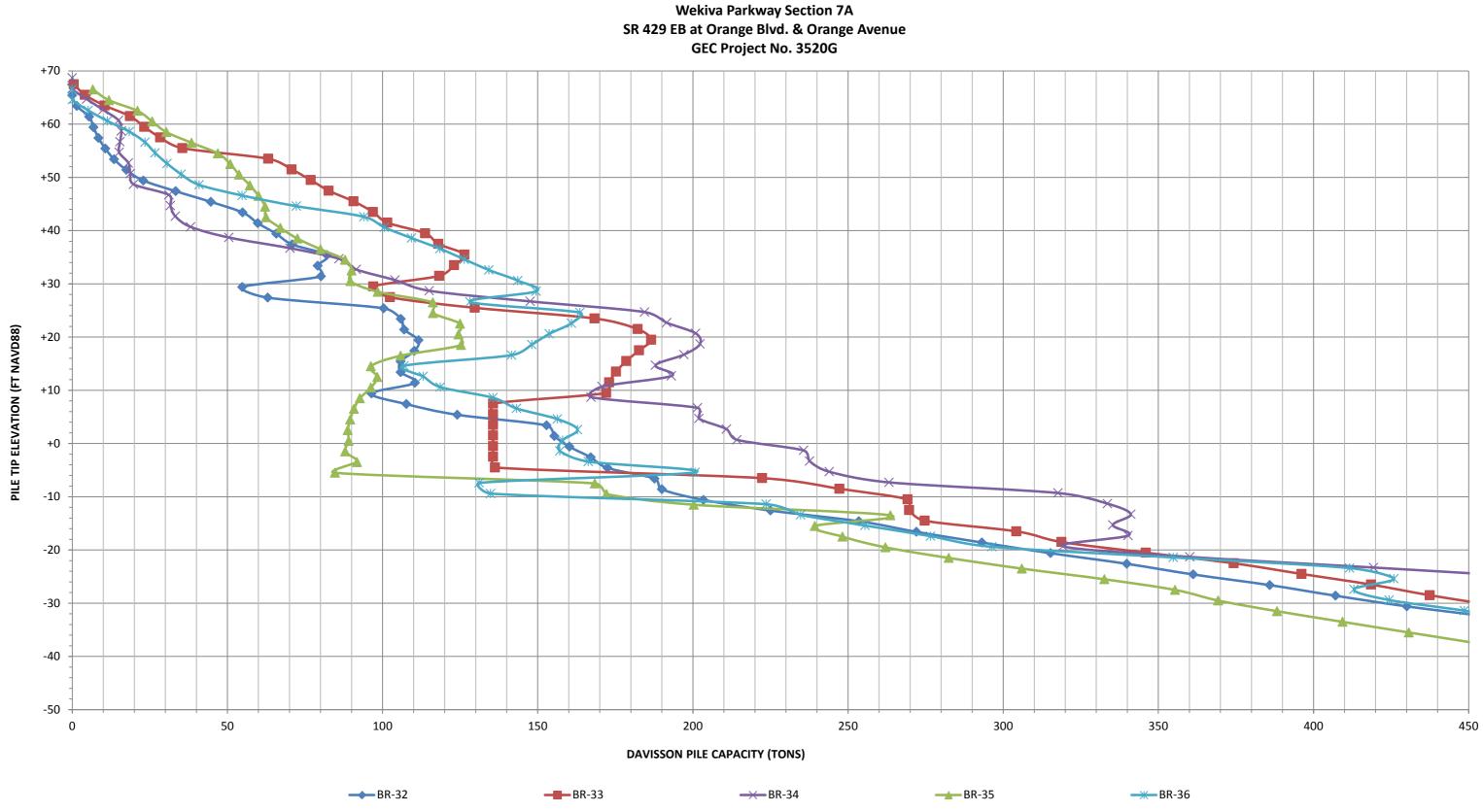
- ** Test pile locations shown on plans.
- *** All piles shall be dynamically monitored during installation in accordance with Section 455-5.13 of the Specifications.
- **** Minimum tip elevation is required to penetrate soft soil strata and limit pile settlement.

PILE DATA TABLE & DAVISSON PILE CAPACITY CURVES

SR 429 OVER ORANGE AVENUE & ORANGE BOULEVARD

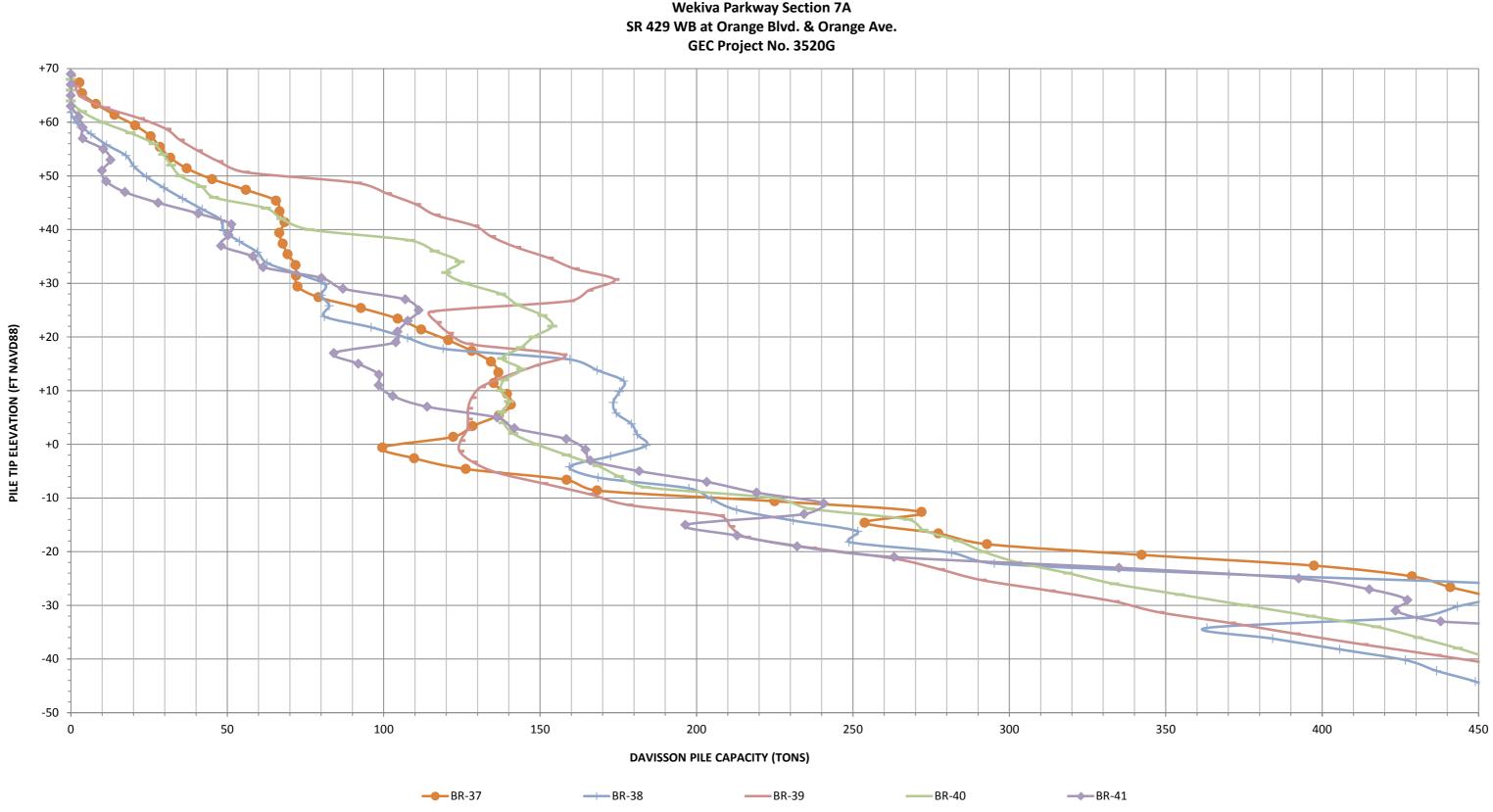
Pile Data Tables Wekiva Parkway (SR 429) – Section 7A FPID No. 240200-2-52-01 GEC Project No. 3520G

SR 429 over Orange Avenue & Orange Boulevard 24-inch Square PPC Pile Design Table


	PILE DATA TABLE													
		Installation Criteria						Design Criteria						

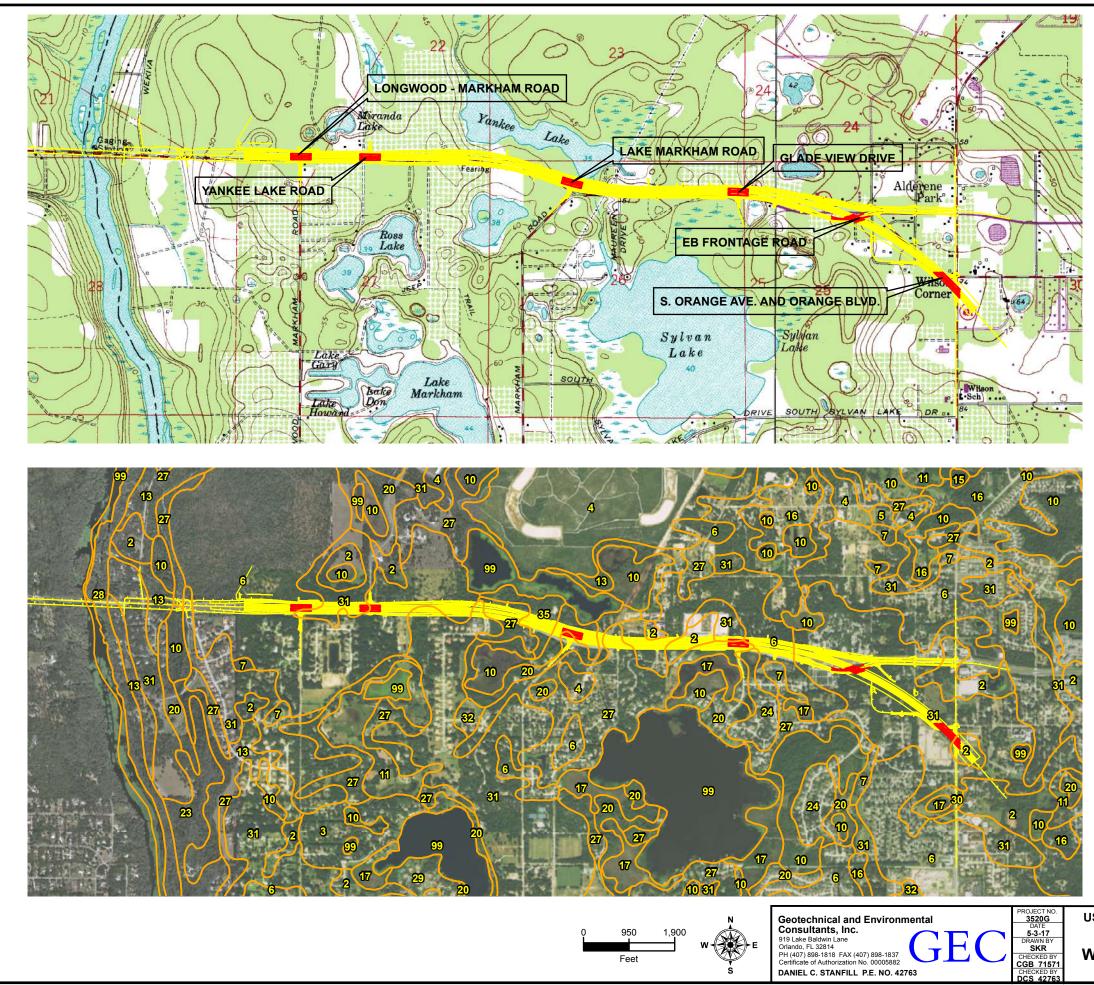
	PPC		Nominal	****	**		Required	Factored				100-Year	Long-Term	Soil
	Pile	*	Uplift	Min. Tip	Test Pile	Required Jet	Preform	Design	Down	Total Scour	Net Scour	Scour	Scour	Resistance
Bent	Size	NBR	Resistance	Elevation	Length	Elevation	Elevation	Load	Drag	Resistance	Resistance	Elevation	Elevation	Factor
No.	(in)	(tons)	(tons)	(ft NAVD88)	(ft)	(ft NAVD88)	(ft NAVD88)	(tons)	(tons)	(tons)	(tons)	(ft. NAVD88)	(ft. NAVD88)	φ
EB-1 (WB)	24	252	N/A	-14	120	N/A	+20	189	N/A	N/A	N/A	N/A	N/A	0.75
P-2 (WB)	24	276	N/A	-24	105	N/A	+20	207	N/A	N/A	N/A	N/A	N/A	0.75
P-3 (WB)	24	288	N/A	-8	105	N/A	+44	216	N/A	N/A	N/A	N/A	N/A	0.75
P-4 (WB)	24	292	N/A	-14	105	N/A	+29	219	N/A	N/A	N/A	N/A	N/A	0.75
EB-5 (WB)	24	303	N/A	0	120	N/A	+35	227	N/A	N/A	N/A	N/A	N/A	0.75
EB-1 (EB)	24	288	N/A	+3	120	N/A	+20	216	N/A	N/A	N/A	N/A	N/A	0.75
P-2 (EB)	24	272	N/A	-7	95	N/A	+50	204	N/A	N/A	N/A	N/A	N/A	0.75
P-3 (EB)	24	271	N/A	0	95	N/A	+28	203	N/A	N/A	N/A	N/A	N/A	0.75
P-4 (EB)	24	302	N/A	-10	110	N/A	+27	226	N/A	N/A	N/A	N/A	N/A	0.75
EB-5 (EB)	24	290	N/A	-20	120	N/A	+27	217	N/A	N/A	N/A	N/A	N/A	0.75

Notes:


* Recommended Nominal Bearing Resistance: NBR ≥ Factored Design Load + Net Scour + Downdrag

ø

- ** Test pile locations shown on plans.
- *** All piles shall be dynamically monitored during installation in accordance with Section 455-5.13 of the Specifications.
- **** Minimum tip elevation is required to penetrate soft soil strata and limit pile settlement.



24-IN SQUARE PPC PILES

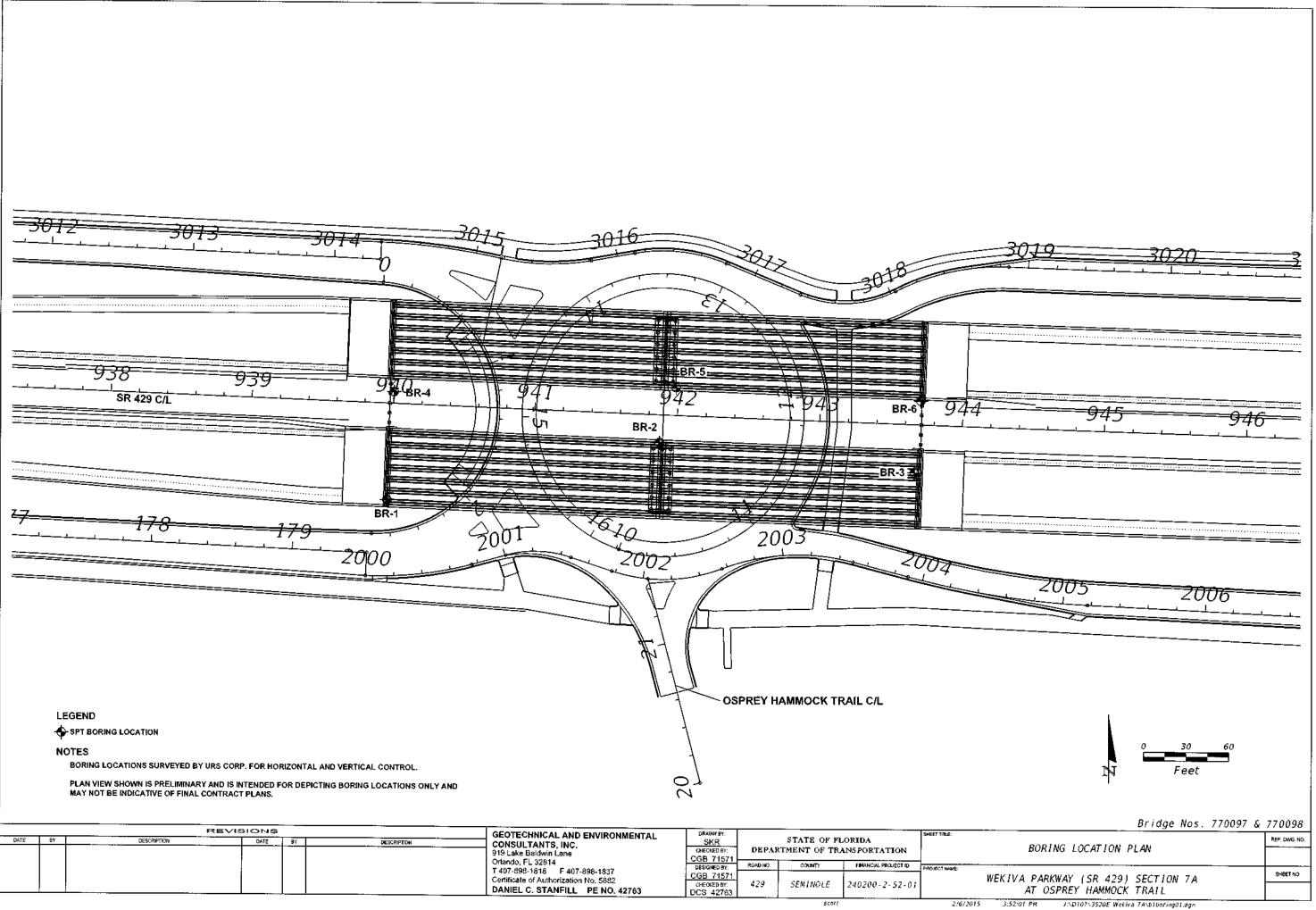
24-IN SQUARE PPC PILES Wekiva Parkway Section 7A

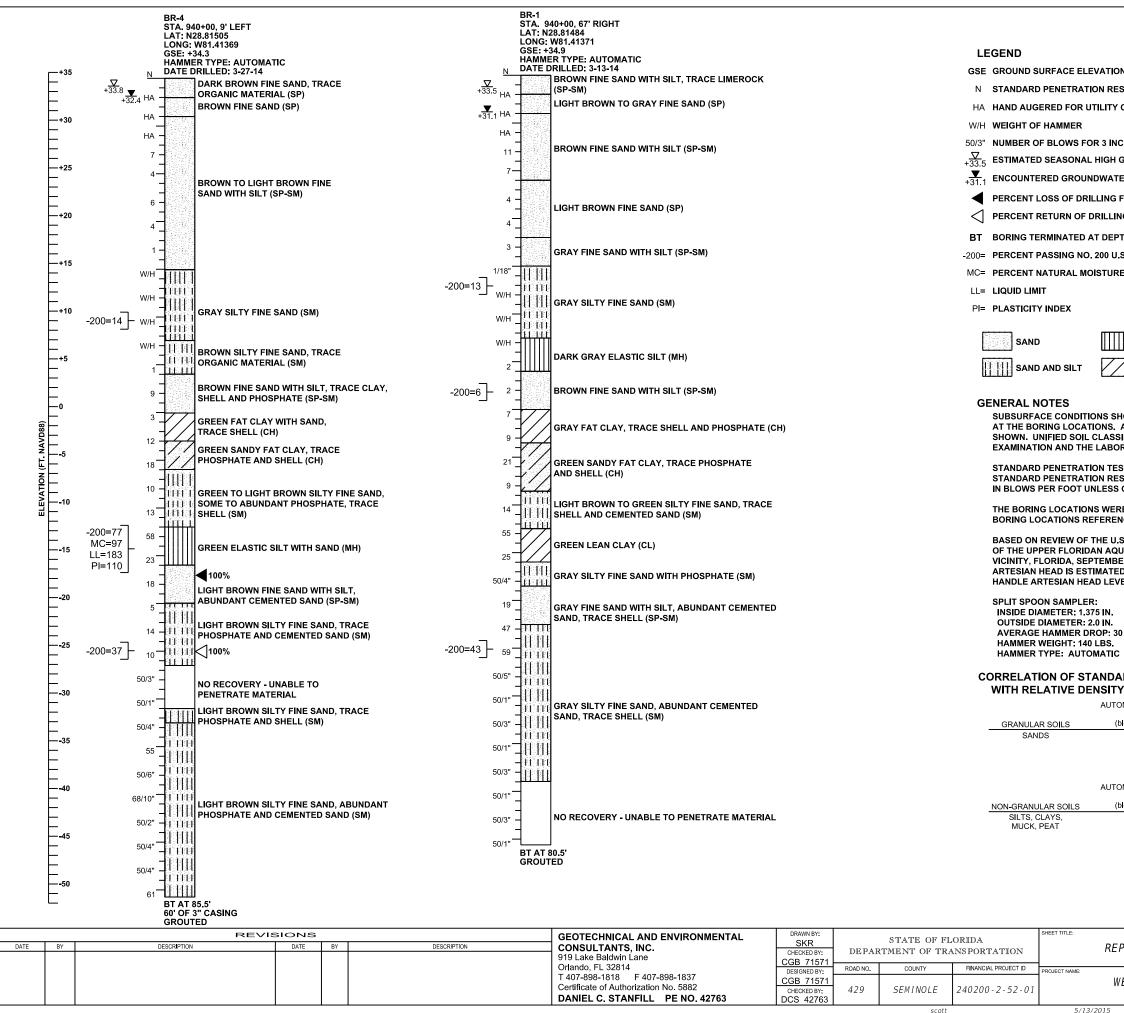
USGS QUADRANGLE AND NRCS SOIL SURVEY MAPS

PREPARED FROM: USGS <u>Sanford SW, FL</u> Quadrangle Map USGS <u>Sanford, FL</u> Quadrangle Map Sections: 22, 23, 25, 26, 27, 28, 39 Township: 19 South Range: 29 East

Section: 30 Townsip: 19 South Range: 30 East

PREPARED FROM:

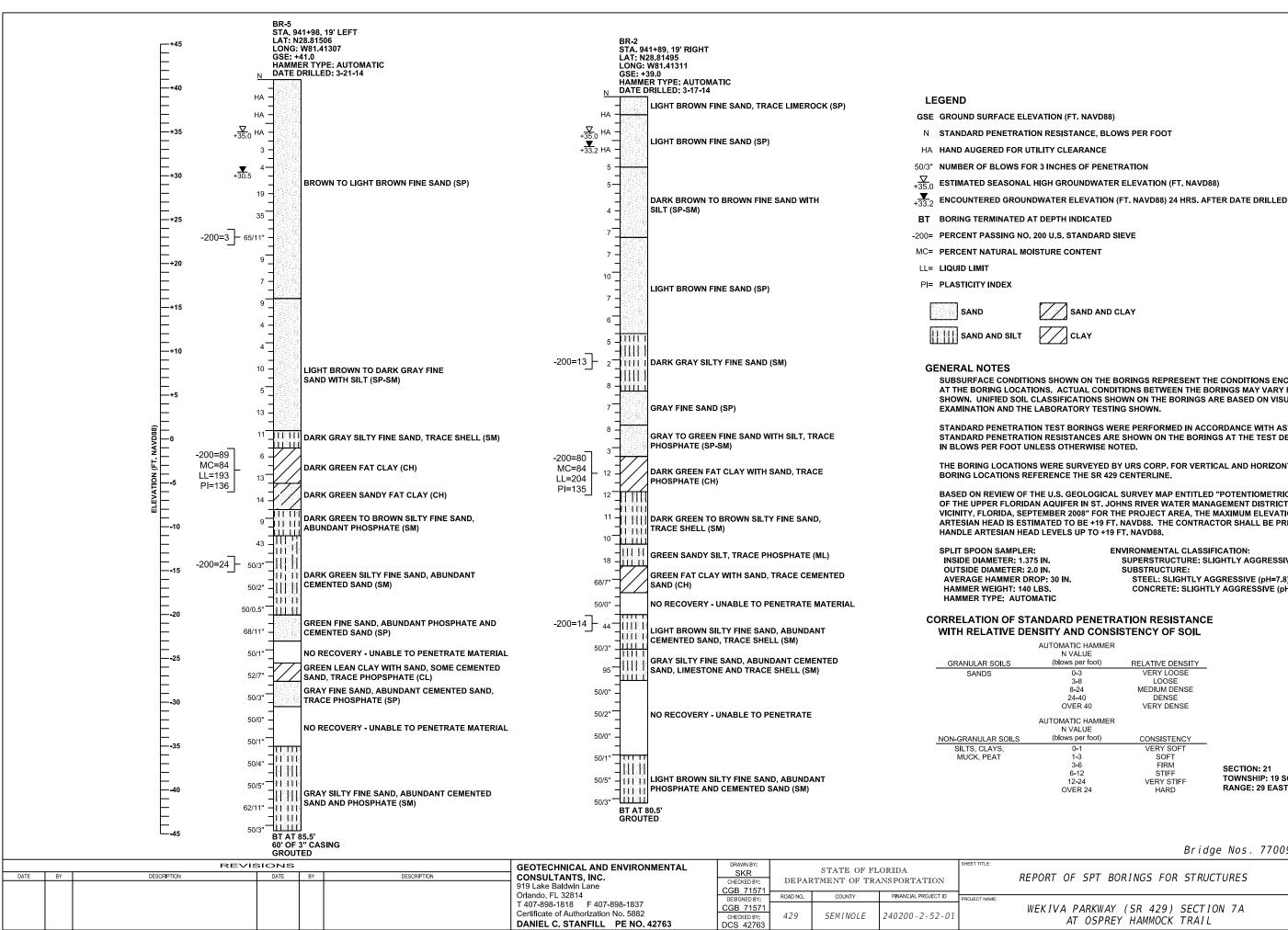

- NRCS Soil Survey of <u>Seminole County, FL</u> <u>Seminole County Map Unit Legend</u> 2 Adamsville-Sparr fine sands 6 Astatula-Apopka fine sands, 0 to 5 percent slopes 10 Basinger, Samsula, and Hontoon soils, depressional 20 Myakka and EauGallie fine sands


- 27 Pomello fine sand, 0 to 5 percent slopes 31 Tavares-Millhopper fine sands, 0 to 5 percent slopes

SGS QUADRANGLE AND NRCS SOIL SURVEY MAPS	FIGURE NO.
VEKIVA PARKWAY (SR 429) SECTION 7A	-

BORING LOCATION PLAN AND REPORT OF SPT BORINGS

SR 429 OVER OSPREY HAMMOCK TRAIL



(

N (FT. NAVD88)	
SISTANCE, BLOWS PER FOOT	
CLEARANCE	
CHES OF PENETRATION	
GROUNDWATER ELEVATION (FT. NAVD88)	
ER ELEVATION (FT. NAVD88) 24 HRS. AFTER DATE DRILLED	
FLUID CIRCULATION	
NG FLUID CIRCULATION	
TH INDICATED	
S. STANDARD SIEVE	
E CONTENT	
SILT SAND AND CLAY	
HOWN ON THE BORINGS REPRESENT THE CONDITIONS ENCOUNTERED ACTUAL CONDITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE	E
SIFICATIONS SHOWN ON THE BORINGS ARE BASED ON VISUAL PRATORY TESTING SHOWN.	
ST BORINGS WERE PERFORMED IN ACCORDANCE WITH ASTM D-1586.	
SISTANCES ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN OTHERWISE NOTED.	
RE SURVEYED BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTRONCE THE SR 429 CENTERLINE.	DL.
S. GEOLOGICAL SURVEY MAP ENTITLED "POTENTIOMETRIC SURFACE	
UIFER IN ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND ER 2008" FOR THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE D TO BE +19 FT. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO VELS UP TO +19 FT. NAVD88.	
ENVIRONMENTAL CLASSIFICATION:	
SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE SUBSTRUCTURE:	
0 IN. STEEL: SLIGHTLY AGGRESSIVE (pH=7.8) CONCRETE: SLIGHTLY AGGRESSIVE (pH=7.8)	
· · · · · · · · · · · · · · · · · · ·	
ARD PENETRATION RESISTANCE	
Y AND CONSISTENCY OF SOIL	
N VALUE	
0-3 VERY LOOSE	
3-8 LOOSE 8-24 MEDIUM DENSE	
24-40 DENSE OVER 40 VERY DENSE	
DMATIC HAMMER	
N VALUE	
blows per foot) CONSISTENCY 0-1 VERY SOFT	
1-3 SOFT 3-6 FIDM	
6-12 STIFF SECTION: 21	
12-24 VERY STIFF TOWNSHIP: 19 SOUTH OVER 24 HARD RANGE: 29 EAST	
Bridge Nos. 770097 &	1
PORT OF SPT BORINGS FOR STRUCTURES	REF. DWG. NO.
IEVINA DADUWAY (CD 400) CECTION 74	SHEET NO.
IEKIVA PARKWAY (SR 429) SECTION 7A AT OSPREY HAMMOCK TRAIL	B1-4
	I

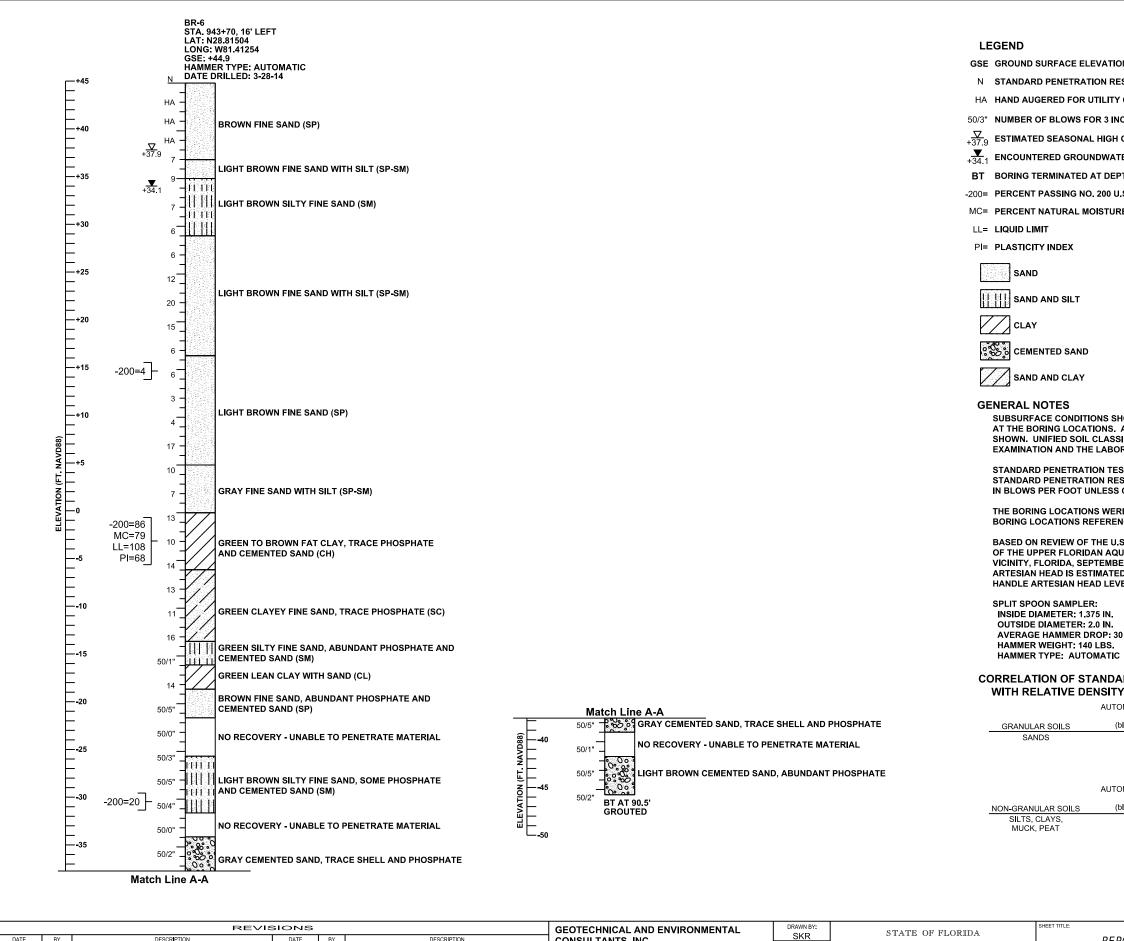
5/13/2015 2:05:07 PM

VATION	(FT.	NAVD88)

SUBSURFACE CONDITIONS SHOWN ON THE BORINGS REPRESENT THE CONDITIONS ENCOUNTERED AT THE BORING LOCATIONS. ACTUAL CONDITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE SHOWN. UNIFIED SOIL CLASSIFICATIONS SHOWN ON THE BORINGS ARE BASED ON VISUAL

STANDARD PENETRATION TEST BORINGS WERE PERFORMED IN ACCORDANCE WITH ASTM D-1586. STANDARD PENETRATION RESISTANCES ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN

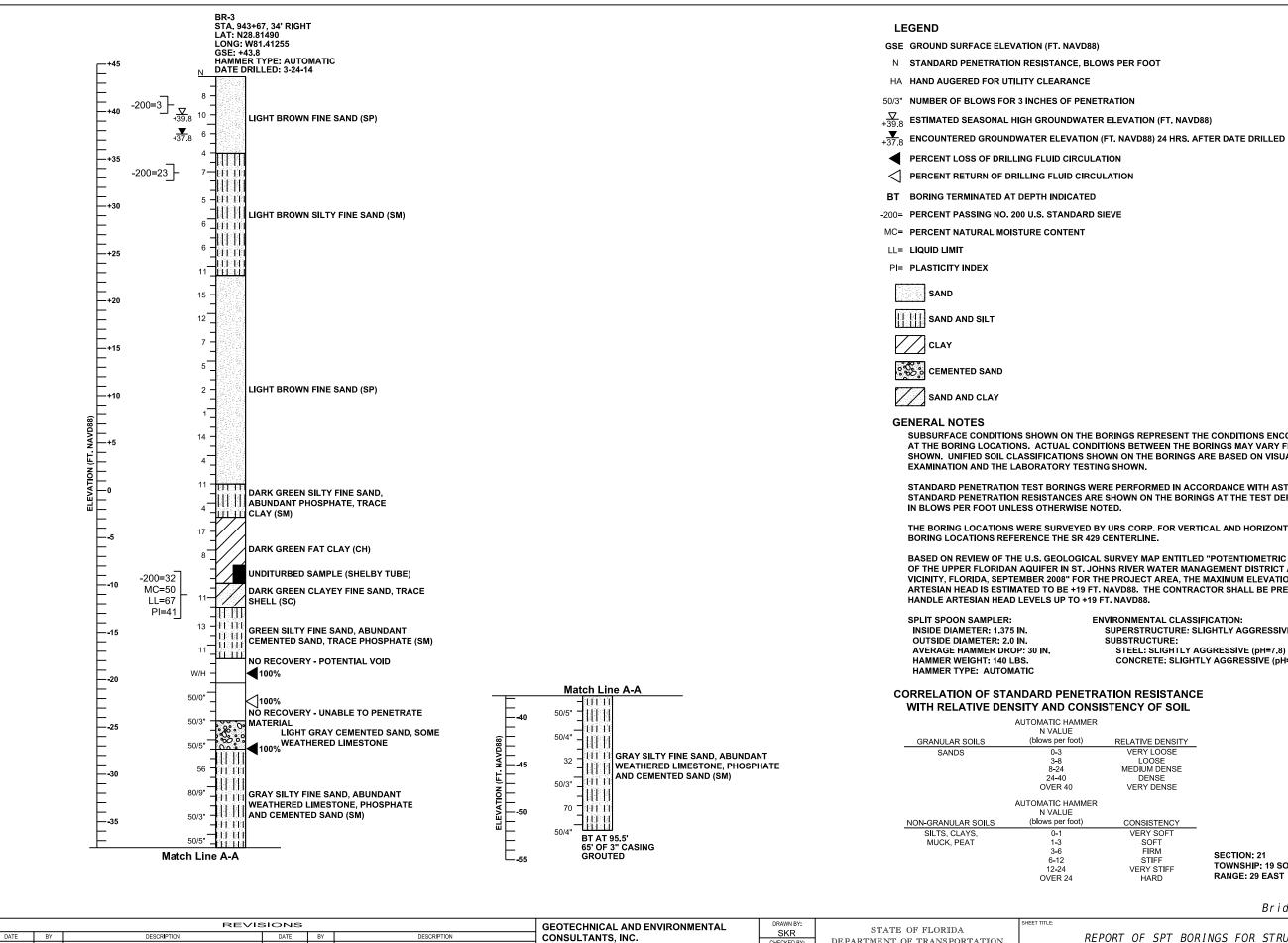
THE BORING LOCATIONS WERE SURVEYED BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL.


BASED ON REVIEW OF THE U.S. GEOLOGICAL SURVEY MAP ENTITLED "POTENTIOMETRIC SURFACE OF THE UPPER FLORIDAN AQUIFER IN ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND VICINITY, FLORIDA, SEPTEMBER 2008" FOR THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE ARTESIAN HEAD IS ESTIMATED TO BE +19 FT. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO

SIVE
.8)
pH=7.8)

RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE CONSISTENCY VERY SOFT SOFT FIRM SECTION: 21 STIFF **TOWNSHIP: 19 SOUTH** VERY STIFF RANGE: 29 EAST HARD

Bridge Nos	770097	& 770098
------------	--------	----------


PORT OF SPT BORINGS FOR STRUCTURES	REF. DWG. NO.	
VEKIVA PARKWAY (SR 429) SECTION 7A		
AT OSPREY HAMMOCK TRAIL	B1-5	

			REVIS	SIONS			GEOTECHNICAL AND ENVIRONMENTAL	DRAWN BY:		STATE OF FL	ORIDA	SHEET THEE.	
[DATE	BY	DESCRIPTION	DATE	BY	DESCRIPTION	CONSULTANTS, INC.	SKR	DEDAT				REPOR
1							919 Lake Baldwin Lane	CHECKED BY:	DEPAI	XIMENI OF IRA	ANSPORTATION		1121 011
							Orlando, FL 32814	CGB 71571	ROAD NO.	COUNTY	FINANCIAL PROJECT ID		
							T 407-898-1818 F 407-898-1837	DESIGNED BY:	none no.	000111		PROJECT NAME:	
							Certificate of Authorization No. 5882	CGB 71571	120	CENTROLE	240200 2 52 01		WEKI
								CHECKED BY:	429	SEMINOLE	240200-2-52-01		
							DANIEL C. STANFILL PE NO. 42763	DCS 42763		1	1		

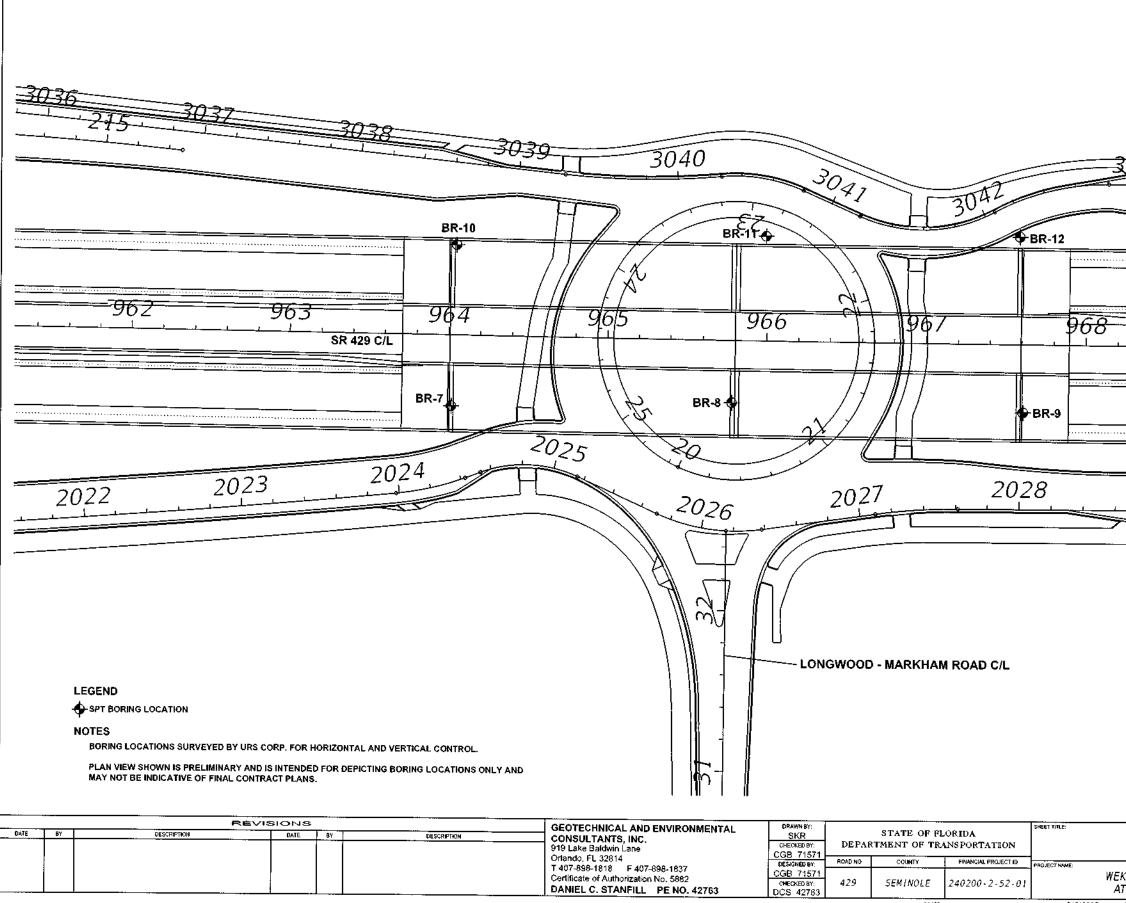
ON (FT. NAVD88)				
SISTANCE, BLOWS PER	FOOT			
CLEARANCE				
CHES OF PENETRATION				
GROUNDWATER ELEVA	TION (FT. NAV	/D88)		
ER ELEVATION (FT. NAV	D88) 24 HRS.	AFTER DATE DRILLED		
TH INDICATED				
.S. STANDARD SIEVE				
RE CONTENT				
ACTUAL CONDITIONS BI	ETWEEN THE	THE CONDITIONS ENCOUNT BORINGS MAY VARY FROM S ARE BASED ON VISUAL		E
ST BORINGS WERE PERF		CCORDANCE WITH ASTM D- RINGS AT THE TEST DEPTHS		
RE SURVEYED BY URS CONCE THE SR 429 CENTER		RTICAL AND HORIZONTAL C	ONTRO	DL.
UIFER IN ST. JOHNS RIVE ER 2008'' FOR THE PROJ	ER WATER MA ECT AREA, TH	ED "POTENTIOMETRIC SUR ANAGEMENT DISTRICT AND HE MAXIMUM ELEVATION OI RACTOR SHALL BE PREPAR	F THE	
	IENTAL CLAS	SIFICATION: SLIGHTLY AGGRESSIVE		
SUBST	RUCTURE:			
		´AGGRESSIVE (pH=7.8) HTLY AGGRESSIVE (pH=7.8)		
ARD PENETRATION	RESISTAN	CF		
Y AND CONSISTENC				
DMATIC HAMMER N VALUE				
blows per foot) RELA	TIVE DENSITY	_		
3-8	RY LOOSE LOOSE			
24-40	DIUM DENSE DENSE			
	RY DENSE			
N VALUE				
	NSISTENCY ERY SOFT	_		
1-3 3-6	SOFT FIRM			
6-12	STIFF ERY STIFF HARD	SECTION: 21 TOWNSHIP: 19 SOUTH RANGE: 29 EAST		
		Bridge Nos. 77009	97 &	770098
PORT OF SPT BORI	NGS FOP	STRUCTURES		REF. DWG. NO.
EKIVA PARKWAY (.	SR 429)	SECTION 7A		SHEET NO.
AT OSPREY				B1-6

^{5/13/2015 2:09:04} PM J:\D109\3520G Wekiva Parkway Section 7A\b1boring08.dgn

		REVIS	51013			GEOTECHNICAL AND ENVIRONMENTAL	SKR		STATE OF FL	ORIDA		
DATE	BY	DESCRIPTION	DATE	BY	DESCRIPTION	CONSULTANTS, INC.		DEDAT		NSPORTATION		REP
						919 Lake Baldwin Lane	CHECKED BY:	DEPAR	CIMENI OF IRA	INSPORTATION		
						Orlando, FL 32814	CGB 71571 DESIGNED BY:	ROAD NO.	COUNTY	FINANCIAL PROJECT ID	PROJECT NAME:	
						T 407-898-1818 F 407-898-1837					PROJECT NAME:	W. F
						Certificate of Authorization No. 5882	CGB 71571	120	SEMINOLE	240200-2-52-01		WE
						DANIEL C. STANFILL PE NO. 42763	CHECKED BY:	429	SEMINULE	240200-2-52-01		
						DANIEL G. STANFILL PENO. 42/03	DCS 42763		1			

ws	PER	FOOT

BORINGS REPRESENT THE CONDITIONS ENCOUNTERED ITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE IOWN ON THE BORINGS ARE BASED ON VISUAL ING SHOWN.	
ERE PERFORMED IN ACCORDANCE WITH ASTM D-1586. E SHOWN ON THE BORINGS AT THE TEST DEPTHS IN OTED.	
3Y URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL. 9 CENTERLINE.	
L SURVEY MAP ENTITLED "POTENTIOMETRIC SURFACE HNS RIVER WATER MANAGEMENT DISTRICT AND HE PROJECT AREA, THE MAXIMUM ELEVATION OF THE MAVD88. THE CONTRACTOR SHALL BE PREPARED TO FT. NAVD88.	
ENVIRONMENTAL CLASSIFICATION: SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE SUBSTRUCTURE: STEEL: SLIGHTLY AGGRESSIVE (pH=7.8) CONCRETE: SLIGHTLY AGGRESSIVE (pH=7.8)	
RATION RESISTANCE SISTENCY OF SOIL	
RELATIVE DENSITY	
LOOSE	
MEDIUM DENSE DENSE	
VERY DENSE	
R	
CONSISTENCY VERY SOFT	
SOFT	
FIRM SECTION: 21	
VERY STIFF TOWNSHIP: 19 SOUTH HARD RANGE: 29 EAST	
Bridge Nos. 770097 &	770098
PORT OF SPT BORINGS FOR STRUCTURES	REF. DWG. N
	SHEET NO.
VEKIVA PARKWAY (SR 429) SECTION 7A	SHEET NU.


5/13/2015 2:10:46 PM J:\D109\3520G Wekiva Parkway Section 7A\b1boring08.dgn

B1-7

AT OSPREY HAMMOCK TRAIL

BORING LOCATION PLAN AND REPORT OF SPT BORINGS

SR 429 OVER LONGWOOD MARKHAM ROAD

2/6/2015

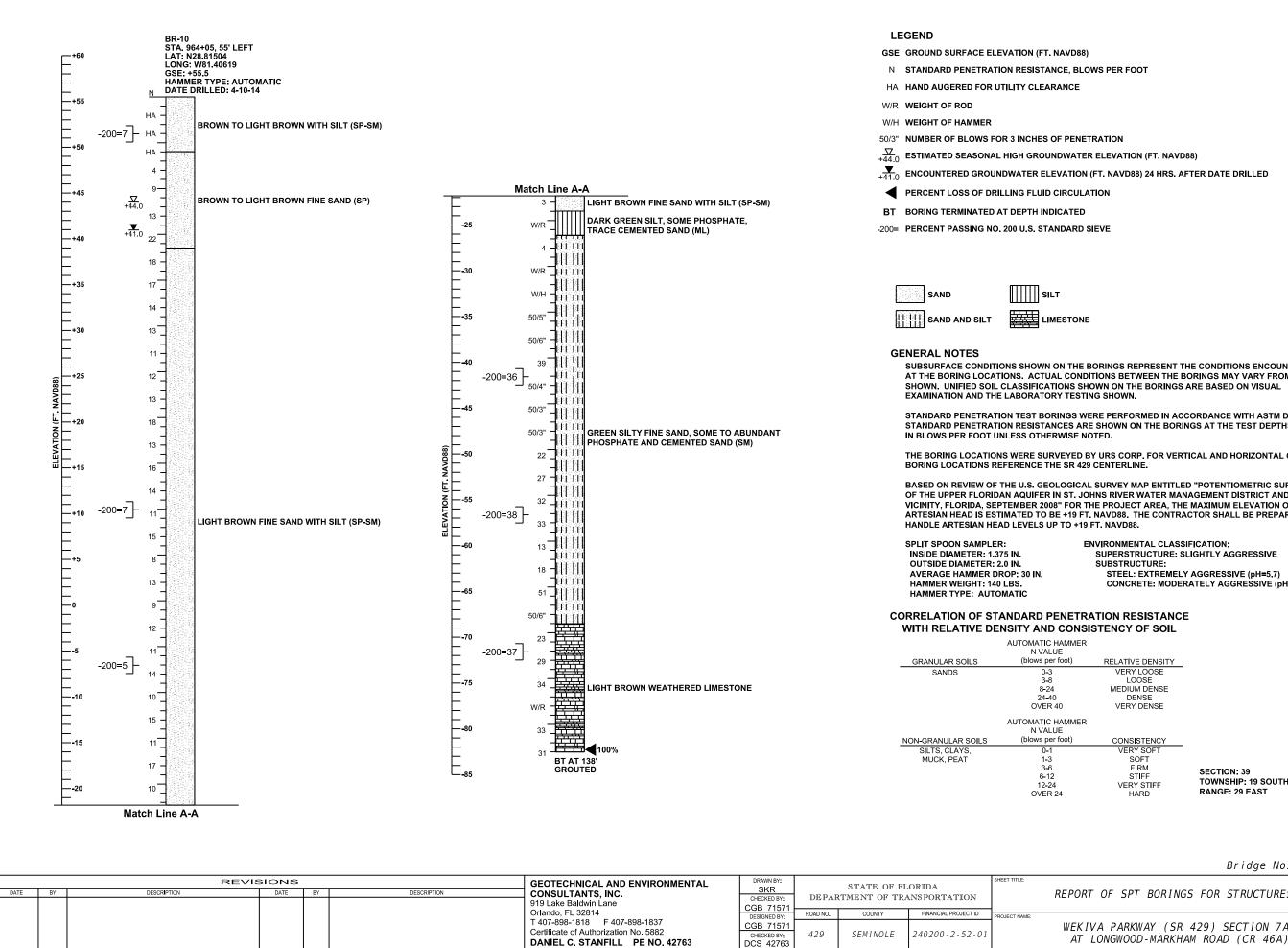
ECT NAME

ROAD NO

429

COUNTY

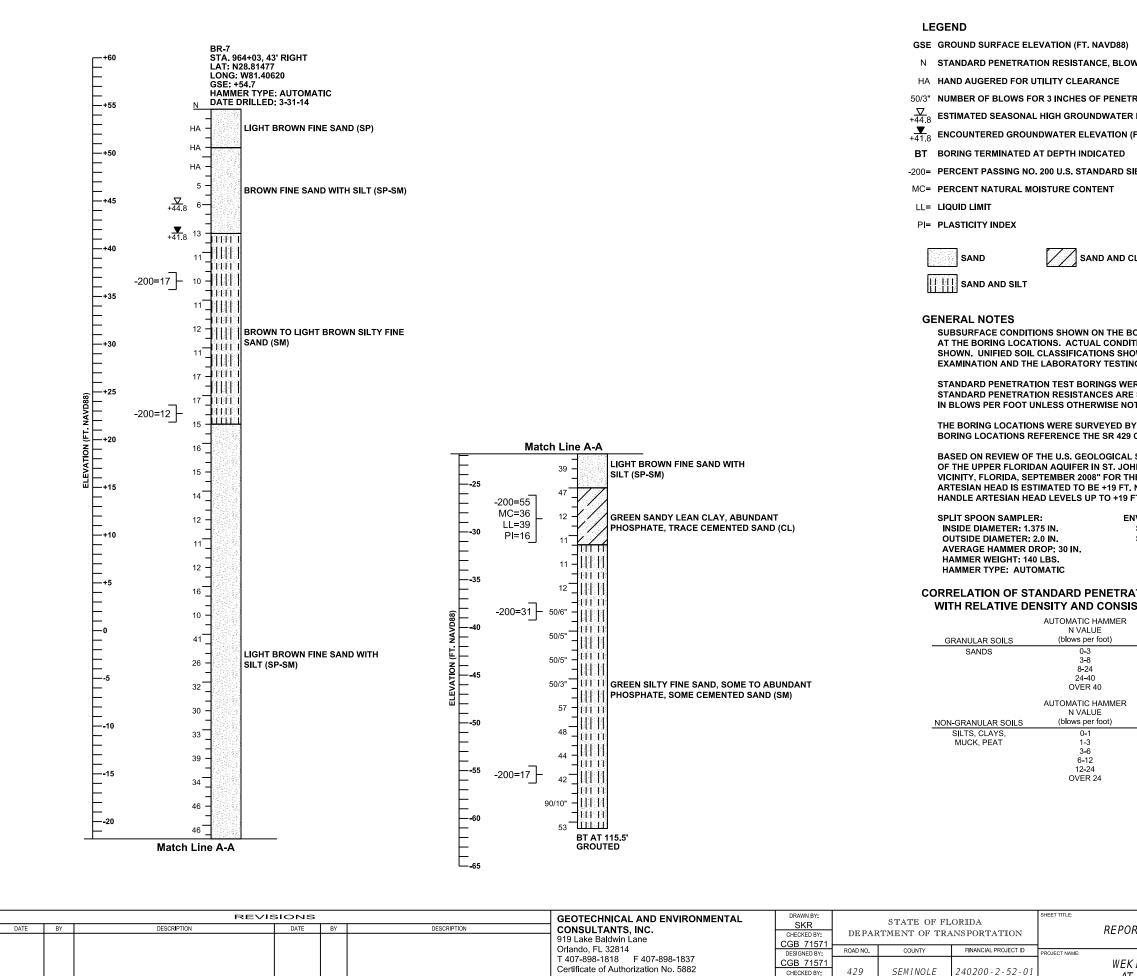
SEMINOLE


scott

FINANCIAL PROJECT ID

240200 . 2 - 52 - 01

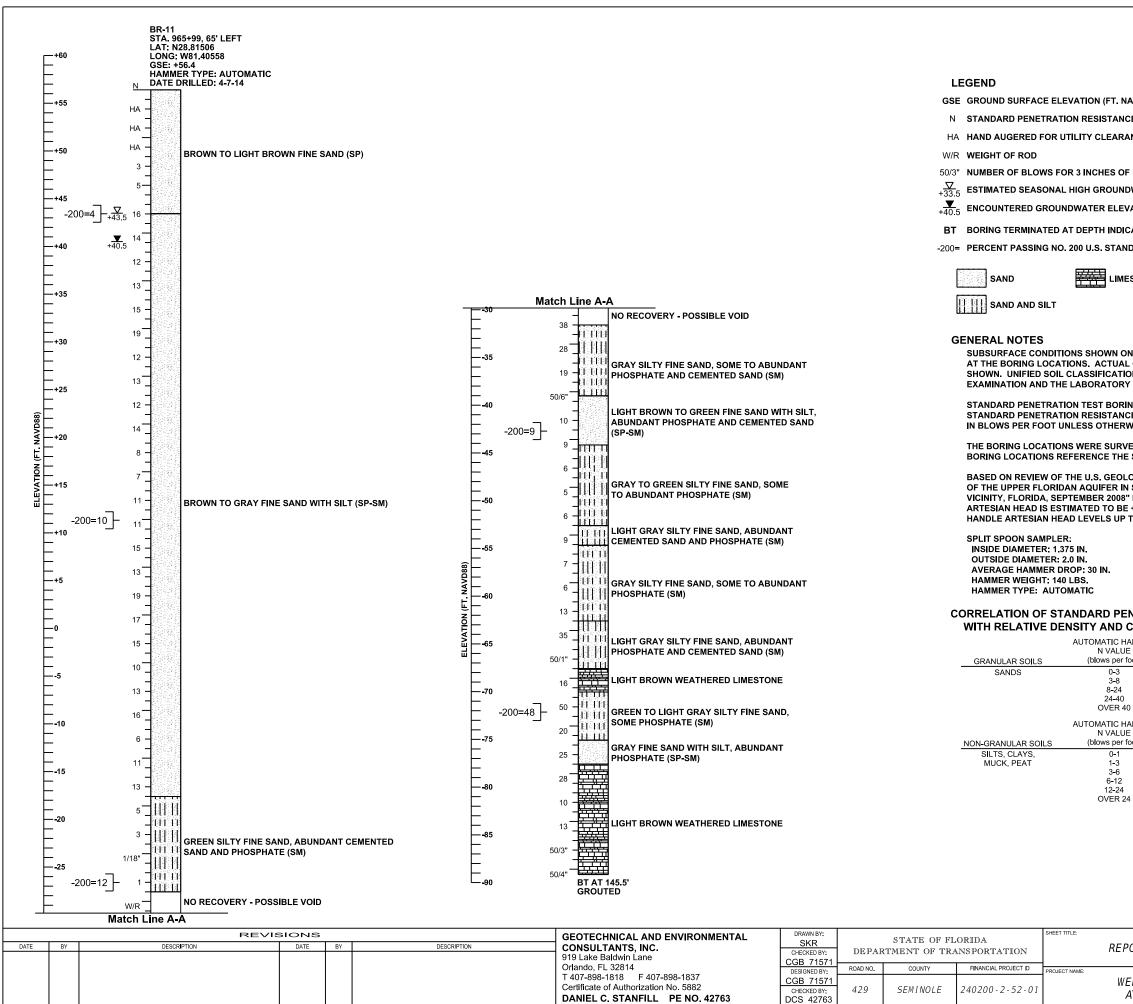
3043 3044	<u></u>
	1
3 969 97 1	
	I
2029 2030	
0 30 60	
IJ Feet	
Bridge Nos. 770099 &	770100
	REF. DWG. NO.
BORING LOCATION PLAN	
WEKIVA PARKWAY (SR 429) SECTION 7A	SHEET NO.
AT LONGWOOD-MARKHAM ROAD (CR 46A)	


3:30:53 PM J:\D107\3520E Wekiva 7A\b1boring02.dgn

BLOWS PER FOOT	
и с	
ENETRATION	
ATER ELEVATION (FT. NAVD88)	
ION (FT. NAVD88) 24 HRS. AFTER DATE DRILLED	
ULATION	
ED	
RD SIEVE	
ONE	
HE BORINGS REPRESENT THE CONDITIONS ENCOUNTERED ONDITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE 5 SHOWN ON THE BORINGS ARE BASED ON VISUAL ESTING SHOWN.	
S WERE PERFORMED IN ACCORDANCE WITH ASTM D-1586. S ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN SE NOTED.	
ED BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL. 2429 CENTERLINE.	
ICAL SURVEY MAP ENTITLED "POTENTIOMETRIC SURFACE . JOHNS RIVER WATER MANAGEMENT DISTRICT AND DR THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE 9 FT. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO +19 FT. NAVD88.	
ENVIRONMENTAL CLASSIFICATION:	
SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE SUBSTRUCTURE:	
STEEL: EXTREMELY AGGRESSIVE (pH=5.7)	
CONCRETE: MODERATELY AGGRESSIVE (pH=5.7)	
TRATION RESISTANCE INSISTENCY OF SOIL	
MER	
RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE	
DENSE VERY DENSE	
MER	
CONSISTENCY	
VERY SOFT SOFT	
FIRM SECTION: 39 STIFF TOWNSHIP: 19 SOUTH	
HARD RANGE: 29 EAST	
Bridge Nos. 770099 &	770100
PORT OF SPT BORINGS FOR STRUCTURES	REF. DWG. NO.
	SHEET NO.
EKIVA PARKWAY (SR 429) SECTION 7A	

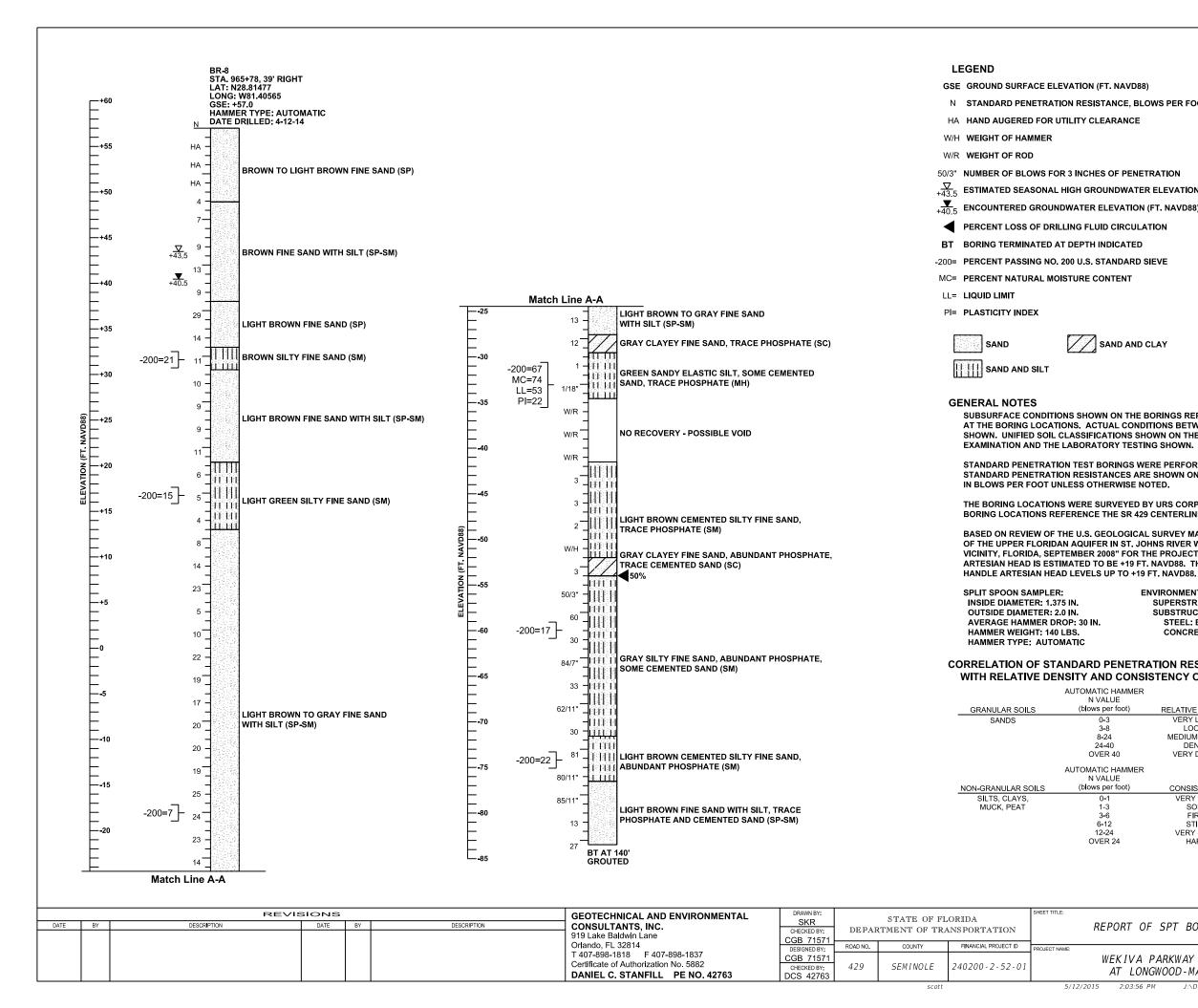
5/14/2015 9:24:11 AM J:\D109\3520G Wekiva Parkway Section 7A\b1boring08.dgn

B2-4


429

scott

CHECKED BY: DCS 42763


DANIEL C. STANFILL PE NO. 42763

(FT. NAVD88)			
ISTANCE, BLOW	S PER FOOT		
LEARANCE			
HES OF PENETR	ATION		
ROUNDWATER B	ELEVATION (FT. NAVD	38)	
R ELEVATION (F	T. NAVD88) 24 HRS. AF	TER DATE DRILLED	
H INDICATED			
. STANDARD SIE	VE		
CONTENT			
SAND AND CL	AY		
2			
		HE CONDITIONS ENCOUNTERED	
		ORINGS MAY VARY FROM THOSE ARE BASED ON VISUAL	
ATORY TESTING	SHOWN.		
		ORDANCE WITH ASTM D-1586. IGS AT THE TEST DEPTHS IN	
THERWISE NOT	ED.		
E SURVEYED BY CE THE SR 429 C		ICAL AND HORIZONTAL CONTROL.	
GEOLOGICAL	URVEY MAP ENTITI FI	D "POTENTIOMETRIC SURFACE	
IFER IN ST. JOHN	IS RIVER WATER MAN	AGEMENT DISTRICT AND MAXIMUM ELEVATION OF THE	
		CTOR SHALL BE PREPARED TO	
EN	/IRONMENTAL CLASSI SUPERSTRUCTURE: SI		
EN	/IRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY	FICATION: LIGHTLY AGGRESSIVE 7 AGGRESSIVE (pH=5.7)	
EN\ S	/IRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY	FICATION: IGHTLY AGGRESSIVE	
ENV S S	/IRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY	FICATION: LIGHTLY AGGRESSIVE 7 AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7)	
ENV S IN. RD PENETRAT	/IRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER	FICATION: LIGHTLY AGGRESSIVE 7 AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7)	
ENV S IN. RD PENETRAT	VIRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER	FICATION: LIGHTLY AGGRESSIVE 7 AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7)	
ENV S IN. RD PENETRAT AND CONSIS IATIC HAMMER	VIRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER	FICATION: LIGHTLY AGGRESSIVE 7 AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7)	
EN S IN. RD PENETRAT AND CONSIS IATIC HAMMER VALUE wws per foot)	VIRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER	FICATION: LIGHTLY AGGRESSIVE 7 AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7)	
ENV S IN. RD PENETRAT AND CONSIS MATIC HAMMER N VALUE ws per foot) 0-3 3-8	VIRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER FION RESISTANCE TENCY OF SOIL RELATIVE DENSITY VERY LOOSE	FICATION: LIGHTLY AGGRESSIVE 7 AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7)	
IN. RD PENETRAT AND CONSIS MATIC HAMMER N VALUE WS per foot) 0-3 3-8 8-24 24-40 OVER 40 MATIC HAMMER	VIRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER FION RESISTANCE TENCY OF SOIL RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE	FICATION: LIGHTLY AGGRESSIVE 7 AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7)	
ENV S S IN. RD PENETRAT AND CONSIS IATIC HAMMER VALUE ws per foot) 0-3 3-8 8-24 24-40 2VER 40 VALUE IATIC HAMMER VVALUE ws per foot)	VIRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER FION RESISTANCE TENCY OF SOIL RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE CONSISTENCY	FICATION: LIGHTLY AGGRESSIVE 7 AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7)	
ENV S S IN. RD PENETRAT AND CONSIS MATIC HAMMER VALUE ws per foot) 0-3 3-8 8-24 24-40 OVER 40 MATIC HAMMER VALUE ws per foot) 0-1 1-3	VIRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER FION RESISTANCE TENCY OF SOIL RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE VERY DENSE CONSISTENCY VERY SOFT SOFT	FICATION: LIGHTLY AGGRESSIVE 7 AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7)	
ENV S S IN. RD PENETRAT AND CONSIS MATIC HAMMER N VALUE ws per foot) 0-3 0-3 3-8 8-24 24-40 OVER 40 VALUE ws per foot) 0-1 1-3 3-6 6-12	VIRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER FION RESISTANCE TENCY OF SOIL RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE VERY DENSE CONSISTENCY VERY SOFT SOFT FIRM STIFF	FICATION: JGHTLY AGGRESSIVE AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7)	
ENV S S IN. RD PENETRAT AND CONSIS IATIC HAMMER VALUE ws per foot) 0-3 3-8 8-24 24-40 20VER 40 IATIC HAMMER VVALUE ws per foot) 0-1 1-3 3-6	VIRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER FION RESISTANCE TENCY OF SOIL RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE VERY DENSE CONSISTENCY VERY SOFT FIRM	FICATION: LIGHTLY AGGRESSIVE AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7)	
ENV S S IN. RD PENETRAT AND CONSIS MATIC HAMMER VALUE ws per foot) 0-3 3-8 8-24 24-40 OVER 40 OVER 40 MATIC HAMMER VALUE ws per foot) 0-1 1-3 3-6 6-12 12-24	VIRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER FION RESISTANCE TENCY OF SOIL RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE VERY DENSE CONSISTENCY VERY SOFT FIRM STIFF VERY STIFF	FICATION: JGHTLY AGGRESSIVE AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7) SECTION: 39 TOWNSHIP: 19 SOUTH	
ENV S S IN. RD PENETRAT AND CONSIS MATIC HAMMER VALUE ws per foot) 0-3 3-8 8-24 24-40 OVER 40 OVER 40 MATIC HAMMER VALUE ws per foot) 0-1 1-3 3-6 6-12 12-24	VIRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER FION RESISTANCE TENCY OF SOIL RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE VERY DENSE CONSISTENCY VERY SOFT FIRM STIFF VERY STIFF	FICATION: JGHTLY AGGRESSIVE AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7) SECTION: 39 TOWNSHIP: 19 SOUTH	
ENV S S IN. RD PENETRAT AND CONSIS MATIC HAMMER VALUE ws per foot) 0-3 3-8 8-24 24-40 OVER 40 OVER 40 MATIC HAMMER VALUE ws per foot) 0-1 1-3 3-6 6-12 12-24	VIRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER FION RESISTANCE TENCY OF SOIL RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE VERY DENSE CONSISTENCY VERY SOFT FIRM STIFF VERY STIFF	FICATION: JGHTLY AGGRESSIVE AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7) SECTION: 39 TOWNSHIP: 19 SOUTH	
ENV S S IN. RD PENETRAT AND CONSIS MATIC HAMMER VALUE ws per foot) 0-3 3-8 8-24 24-40 OVER 40 OVER 40 MATIC HAMMER VALUE ws per foot) 0-1 1-3 3-6 6-12 12-24	VIRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER FION RESISTANCE TENCY OF SOIL RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE VERY DENSE CONSISTENCY VERY SOFT FIRM STIFF VERY STIFF	FICATION: JGHTLY AGGRESSIVE AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7) SECTION: 39 TOWNSHIP: 19 SOUTH	
ENV S S IN. RD PENETRAT AND CONSIS MATIC HAMMER VALUE ws per foot) 0-3 3-8 8-24 24-40 OVER 40 OVER 40 MATIC HAMMER VALUE ws per foot) 0-1 1-3 3-6 6-12 12-24	VIRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER FION RESISTANCE TENCY OF SOIL RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE VERY DENSE CONSISTENCY VERY SOFT FIRM STIFF VERY STIFF	FICATION: JGHTLY AGGRESSIVE AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7) SECTION: 39 TOWNSHIP: 19 SOUTH	
ENV S S IN. RD PENETRAT AND CONSIS MATIC HAMMER VALUE ws per foot) 0-3 3-8 8-24 24-40 OVER 40 OVER 40 MATIC HAMMER VALUE ws per foot) 0-1 1-3 3-6 6-12 12-24	VIRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER FION RESISTANCE TENCY OF SOIL RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE VERY DENSE CONSISTENCY VERY SOFT FIRM STIFF VERY STIFF	FICATION: LIGHTLY AGGRESSIVE AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7)	£ 770100
ENV S S IN. RD PENETRAT AND CONSIS MATIC HAMMER VALUE ws per foot) 0-3 3-8 8-24 24-40 OVER 40 OVER 40 MATIC HAMMER VALUE ws per foot) 0-1 1-3 3-6 6-12 12-24	VIRONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER FION RESISTANCE TENCY OF SOIL RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE VERY DENSE CONSISTENCY VERY SOFT FIRM STIFF VERY STIFF	FICATION: JGHTLY AGGRESSIVE AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7) SECTION: 39 TOWNSHIP: 19 SOUTH	
IN. RD PENETRAT AND CONSIS MATIC HAMMER VALUE ws per foot) 0-3 3-8 8-24 24-40 OVER 40 MATIC HAMMER VALUE ws per foot) 0-1 1-3 3-6 6-12 12-24 OVER 24	ARONMENTAL CLASSI SUPERSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER FION RESISTANCE TENCY OF SOIL RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE CONSISTENCY VERY SOFT FIRM STIFF VERY STIFF HARD	FICATION: LIGHTLY AGGRESSIVE AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7)	& 770100 REF. DWG. NO.
ENV S IN. RD PENETRAT AND CONSIS MATIC HAMMER NVALUE WAS per foot) 0-3 3-8 8-24 24-40 DVER 40 MATIC HAMMER NVALUE Was per foot) 0-1 1-3 3-6 6-12 12-24 DVER 24 ENV REPOR MEE	TION RESISTANCE SUBSTRUCTURE: SI SUBSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER TION RESISTANCE TENCY OF SOIL RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE CONSISTENCY VERY SOFT SOFT FIRM STIFF VERY SOFT SOFT HARD	FICATION: JGHTLY AGGRESSIVE (AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7) SECTION: 39 TOWNSHIP: 19 SOUTH RANGE: 29 EAST Bridge Nos. 770099 JGS FOR STRUCTURES	REF. DWG. NO.
IN. RD PENETRAT AND CONSIS MATIC HAMMER N VALUE WS per foot) 0-3 3-8 8-24 24-40 OVER 40 MATIC HAMMER N VALUE WS per foot) 0-1 1-3 3-6 6-12 12-24 OVER 24 MATIC HAMMER N VALUE WS per foot) 0-1 1-3 3-6 6-12 12-24 OVER 24 ME REPOR	VIRONMENTAL CLASSI SUPERSTRUCTURE: SI SUPERSTRUCTURE: STEEL: EXTREMELY CONCRETE: MODER TION RESISTANCE TENCY OF SOIL RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE CONSISTENCY VERY SOFT SOFT FIRM STIFF VERY SOFT SOFT FIRM STIFF VERY STIFF HARD	FICATION: LIGHTLY AGGRESSIVE AGGRESSIVE (pH=5.7) ATELY AGGRESSIVE (pH=5.7) SECTION: 39 TOWNSHIP: 19 SOUTH RANGE: 29 EAST Bridge Nos. 770099	

NAVD88)		
NCE, BLOWS PER FOOT		
RANCE		
DF PENETRATION		
NDWATER ELEVATION (FT. NAVD88)		
EVATION (FT. NAVD88) 24 HRS. AFTER DA	TE DRILLED	
NDARD SIEVE		
IESTONE		
ON THE BORINGS REPRESENT THE CONI AL CONDITIONS BETWEEN THE BORINGS		
IONS SHOWN ON THE BORINGS ARE BAS RY TESTING SHOWN.	SED ON VISUAL	
RINGS WERE PERFORMED IN ACCORDAN		
NCES ARE SHOWN ON THE BORINGS AT 1		
RWISE NOTED.		
VEYED BY URS CORP. FOR VERTICAL AN IE SR 429 CENTERLINE.	ID HORIZONTAL CONTROL.	
DLOGICAL SURVEY MAP ENTITLED "POTE IN ST. JOHNS RIVER WATER MANAGEME	NT DISTRICT AND	
8" FOR THE PROJECT AREA, THE MAXIM E +19 FT. NAVD88. THE CONTRACTOR S		
P TO +19 FT. NAVD88.		
ENVIRONMENTAL CLASSIFICATIO		
SUPERSTRUCTURE: SLIGHTLY SUBSTRUCTURE:	AGGRESSIVE	
STEEL: EXTREMELY AGGRE CONCRETE: MODERATELY		
ENETRATION RESISTANCE		
CONSISTENCY OF SOIL		
HAMMER UE		
r foot) RELATIVE DENSITY		
VERY LOOSE LOOSE		
MEDIUM DENSE		
40 VERY DENSE		
HAMMER		
r foot) CONSISTENCY VERY SOFT		
SOFT		
STIFF SECT	'ION: 39 NSHIP: 19 SOUTH	
+ VERISIFF	GE: 29 EAST	
В	ridge Nos. 770099 &	770100
PORT OF SPT BORINGS FOR S	TRUCTURES	REF. DWG. NO.
TONT OF SET BUNINGS FUR S	THUCTURES	
VEKIVA PARKWAY (SR 429) SE		SHEET NO.

5/12/2015 2:04:28 PM J:\D109\3520G Wekiva Parkway Section 7A\b1boring08.dgn

. NAVD88)
ANCE, BLOWS PER FOOT
RANCE

- $\frac{\nabla}{+43.5}$ ESTIMATED SEASONAL HIGH GROUNDWATER ELEVATION (FT. NAVD88)
- $\mathbf{\Psi}_{+40.5}$ ENCOUNTERED GROUNDWATER ELEVATION (FT. NAVD88) 24 HRS. AFTER DATE DRILLED

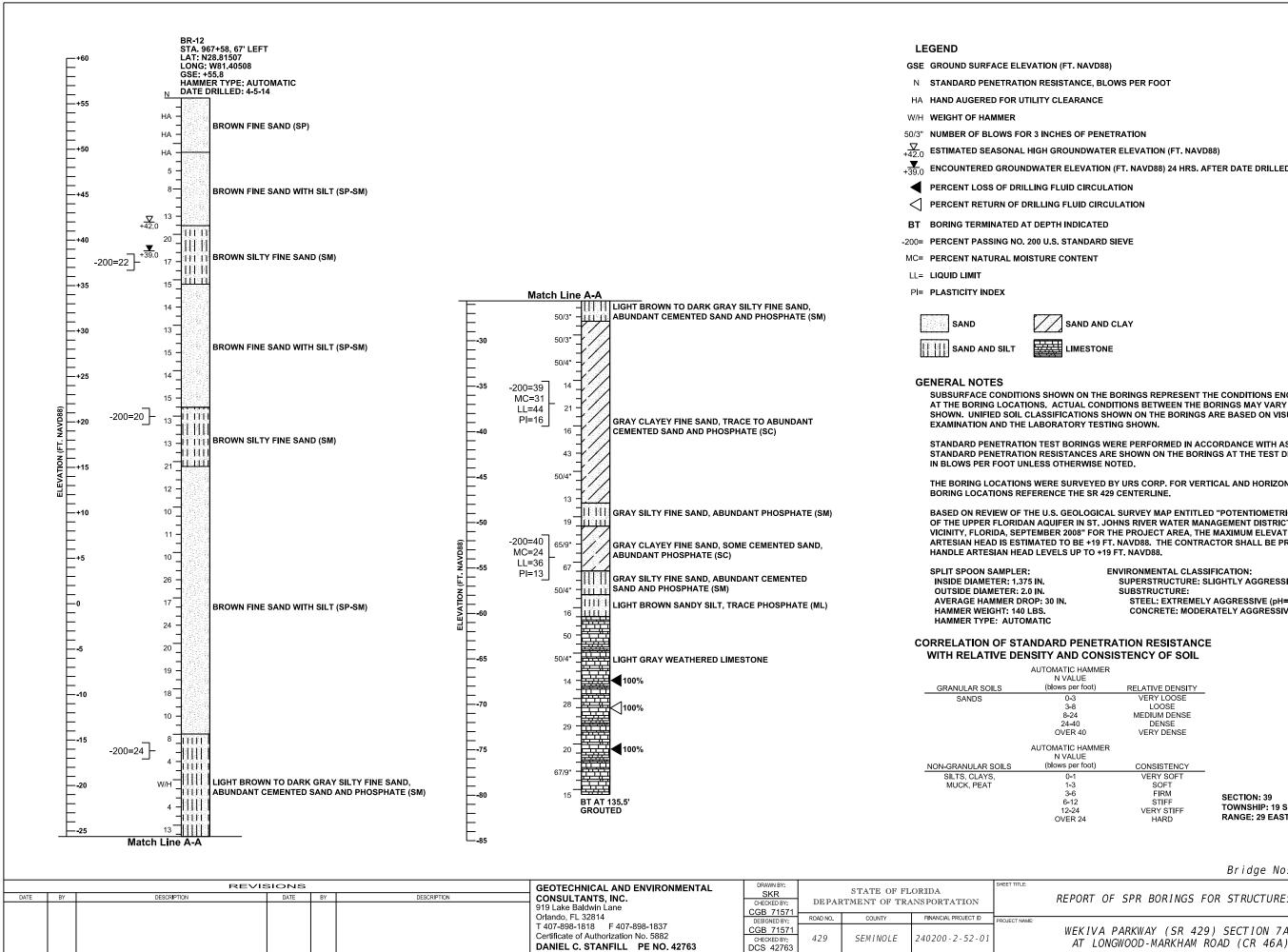
SAND AND CLAY

SUBSURFACE CONDITIONS SHOWN ON THE BORINGS REPRESENT THE CONDITIONS ENCOUNTERED AT THE BORING LOCATIONS. ACTUAL CONDITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE SHOWN. UNIFIED SOIL CLASSIFICATIONS SHOWN ON THE BORINGS ARE BASED ON VISUAL EXAMINATION AND THE LABORATORY TESTING SHOWN.

STANDARD PENETRATION TEST BORINGS WERE PERFORMED IN ACCORDANCE WITH ASTM D-1586. STANDARD PENETRATION RESISTANCES ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN

THE BORING LOCATIONS WERE SURVEYED BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL. **BORING LOCATIONS REFERENCE THE SR 429 CENTERLINE.**

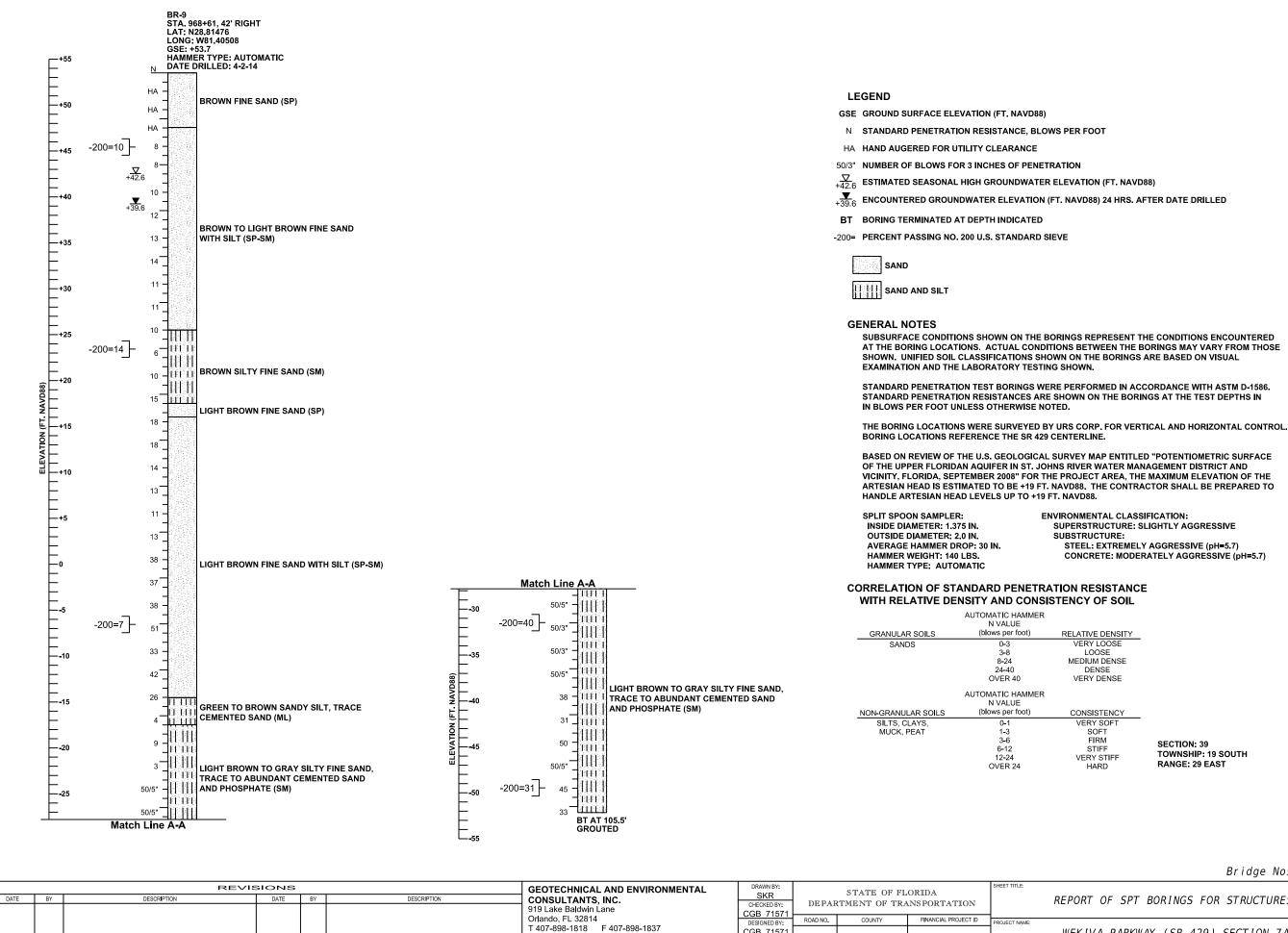
BASED ON REVIEW OF THE U.S. GEOLOGICAL SURVEY MAP ENTITLED "POTENTIOMETRIC SURFACE OF THE UPPER FLORIDAN AQUIFER IN ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND VICINITY, FLORIDA, SEPTEMBER 2008" FOR THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE ARTESIAN HEAD IS ESTIMATED TO BE +19 FT. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO


> ENVIRONMENTAL CLASSIFICATION: SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE SUBSTRUCTURE: STEEL: EXTREMELY AGGRESSIVE (pH=5.7) CONCRETE: MODERATELY AGGRESSIVE (pH=5.7)

CORRELATION OF STANDARD PENETRATION RESISTANCE WITH RELATIVE DENSITY AND CONSISTENCY OF SOIL

AUTOMATIC HAMMER N VALUE (blows per foot) RELATIVE DENSITY VERY LOOSE 3-8 LOOSE 8**-**24 MEDIUM DENSE 24-40 DENSE OVER 40 VERY DENSE AUTOMATIC HAMMER N VALUE (blows per foot) CONSISTENCY VERY SOFT 0-1 1-3 SOFT 3-6 FIRM SECTION: 39 6-12 STIFF TOWNSHIP: 19 SOUTH 12-24 VERY STIFF RANGE: 29 EAST OVER 24 HARD Bridge Nos. 770099 & 770100 REF. DWG. NO. REPORT OF SPT BORINGS FOR STRUCTURES

PORT OF SPT BORINGS FOR STRUCTURES	
EKIVA PARKWAY (SR 429) SECTION 7A	SHEET NO.
AT LONGWOOD-MARKHAM ROAD (CR 46A)	B2 - 7


J:\D109\3520G Wekiva Parkwav Section 7A\b1boring08.dgn

NAVD88)		
NCE, BLOWS PER FOOT		
RANCE		
NDWATER ELEVATION (FT. NAVD88)		
EVATION (FT. NAVD88) 24 HRS. AFTE	ER DATE DRILLED	
CIRCULATION		
UID CIRCULATION		
DICATED		
ANDARD SIEVE		
ITENT		
AND AND CLAY		
MESTONE		
MESTONE		
ON THE BORINGS REPRESENT THE		
AL CONDITIONS BETWEEN THE BOF TIONS SHOWN ON THE BORINGS AR RY TESTING SHOWN.		
RINGS WERE PERFORMED IN ACCO NCES ARE SHOWN ON THE BORING RWISE NOTED.		
RVEYED BY URS CORP. FOR VERTIC HE SR 429 CENTERLINE.	AL AND HORIZONTAL CONTROL.	
OLOGICAL SURVEY MAP ENTITLED "	POTENTIOMETRIC SURFACE	
IN ST. JOHNS RIVER WATER MANAG 08" FOR THE PROJECT AREA, THE M BE +19 FT. NAVD88. THE CONTRACT JP TO +19 FT. NAVD88.	AXIMUM ELEVATION OF THE	
ENVIRONMENTAL CLASSIFI	CATION:	
SUPERSTRUCTURE: SLIG SUBSTRUCTURE:		
STEEL: EXTREMELY A		
CONCRETE: MODERA	TELY AGGRESSIVE (pH=5.7)	
PENETRATION RESISTANCE		
D CONSISTENCY OF SOIL		
CHAMMER LUE		
er foot) RELATIVE DENSITY 3 VERY LOOSE		
B LOOSE		
4 MEDIUM DENSE 40 DENSE		
R 40 VERY DENSE		
LUE		
er foot) CONSISTENCY 1 VERY SOFT		
3 SOFT 5 FIRM	SECTION: 39	
2 STIFF 24 VERY STIFF	TOWNSHIP: 19 SOUTH	
R 24 HARD	RANGE: 29 EAST	
	Pridao Noc 770000 C	770100
	Bridge Nos. 770099 &	
PORT OF SPR BORINGS FOR	STRUCTURES	REF. DWG. NO.
		a:
EKIVA PARKWAY (SR 429)	SECTION 7A	SHEET NO.

5/12/2015 2:08:30 PM J:\D109\3520G Wekiva Parkway Section 7A\b1boring08.dgn

B2-8

Certificate of Authorization No. 5882 DANIEL C. STANFILL PE NO. 42763	CCCB 71371 CHECKED BY: DCS 42763	429	SEMINOLE	240200-2-52-01	
			scott		5/1

CGB 71571

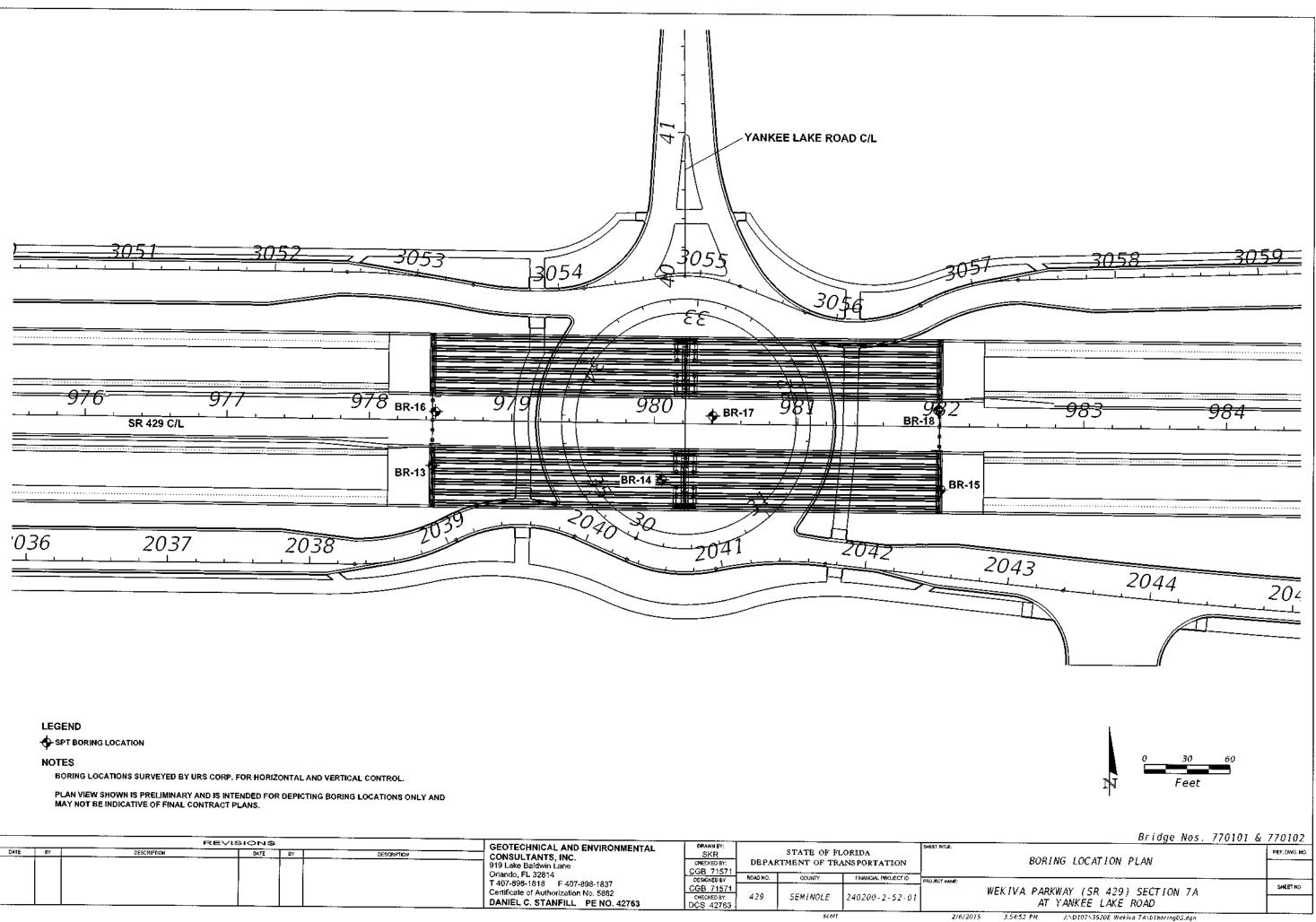
W

ENVIRONMENTAL CLASSIFICATION: SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE SUBSTRUCTURE: STEEL: EXTREMELY AGGRESSIVE (pH=5.7) CONCRETE: MODERATELY AGGRESSIVE (pH=5.7)

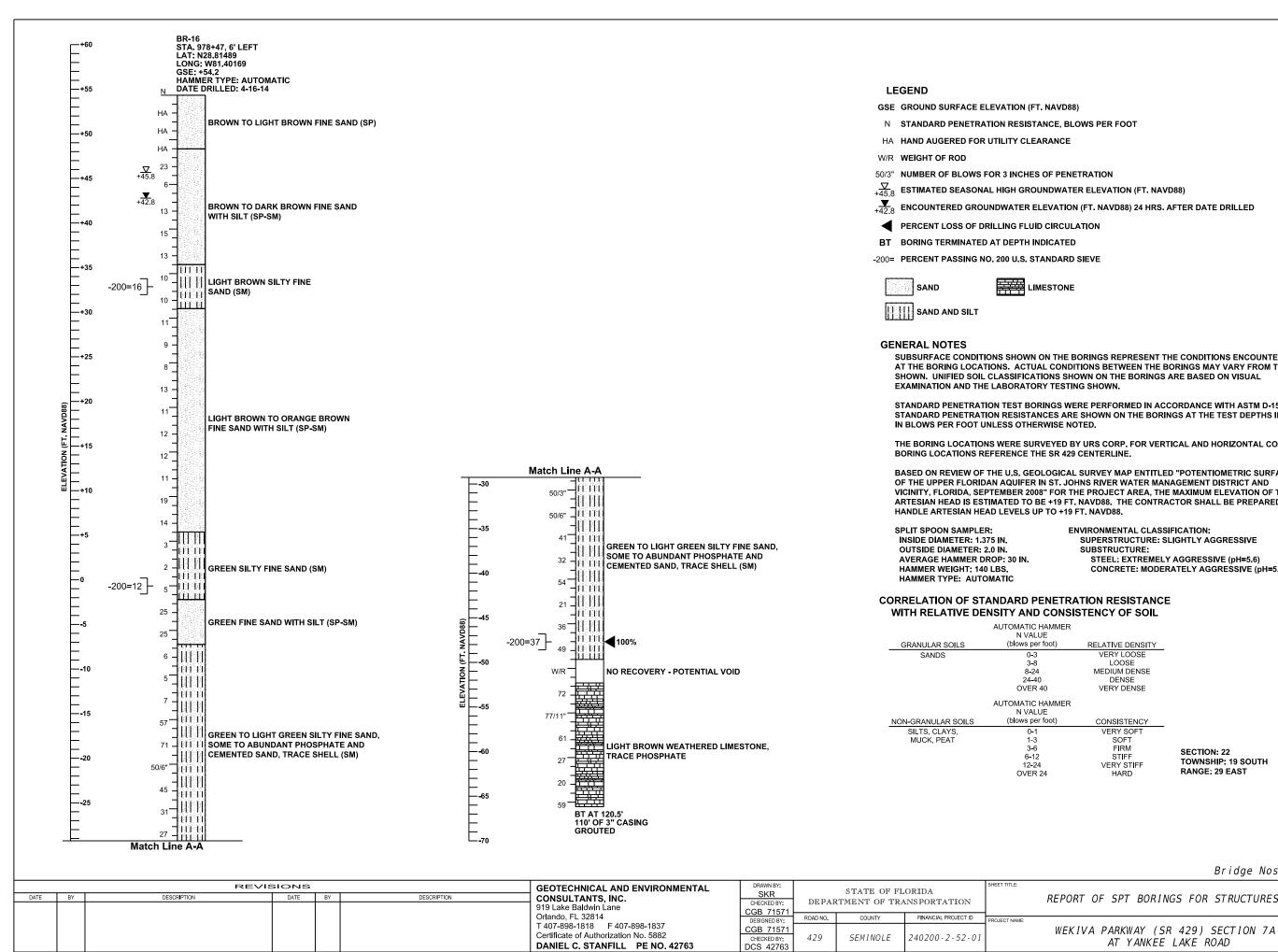
RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE

CONSISTENCY VERY SOFT SOFT FIRM STIFF VERY STIFF HARD

SECTION: 39 TOWNSHIP: 19 SOUTH RANGE: 29 EAST

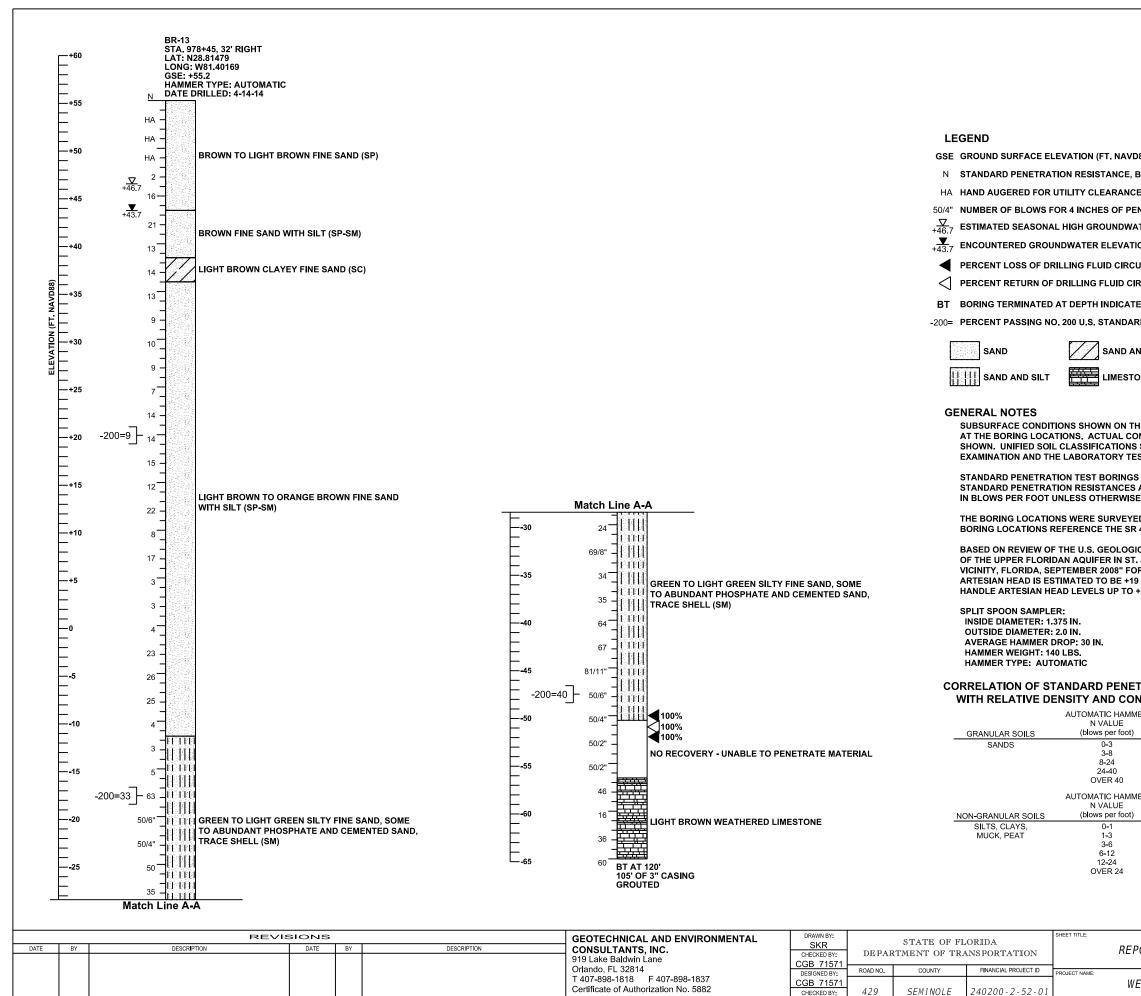

Bridge Nos. 770099 & 770100

	REF. DWG. NO.
PORT OF SPT BORINGS FOR STRUCTURES	
IEKIVA PARKWAY (SR 429) SECTION 7A	
AT LONGWOOD-MARKHAM ROAD (CR 46A)	B2-9


J:\D109\3520G Wekiva Parkway Section 7A\b1boring08.dgn

BORING LOCATION PLAN AND REPORT OF SPT BORINGS

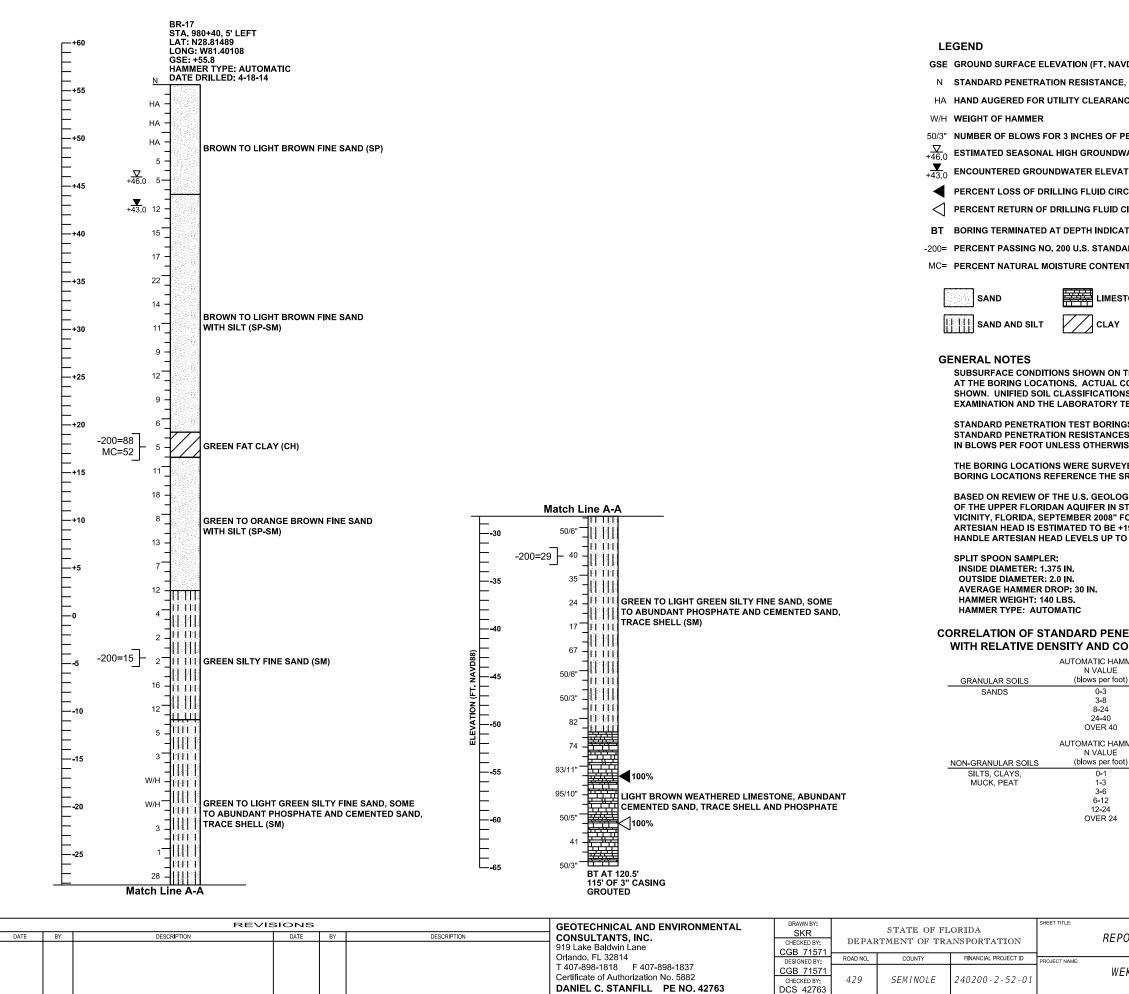
SR 429 OVER YANKEE LAKE ROAD


				REVISIONS			GEOTECHNICAL AND ENVIRONMENTAL	DRAWN BY:				SHEET TATLE:	
	DATE	BY	DESCRIPTION	DATE	BY	DESCRIPTION	CONSULTANTS, INC. 919 Lake Baldwin Lane	SKR CNECKED BY: CGB 71571			ANSPORTATION]	
ĺ							T 407-898-1818 F 407-898-1837 Certificate of Authorization No. 5882	DESIGNED BY CGB 71571 CHECKED BY: DCS 42763	road no. 429	SEMINOLE	FINANCIAL PROJECT ID 240200 - 2 - 52 - 01	PROJECT NAME:	WEKT

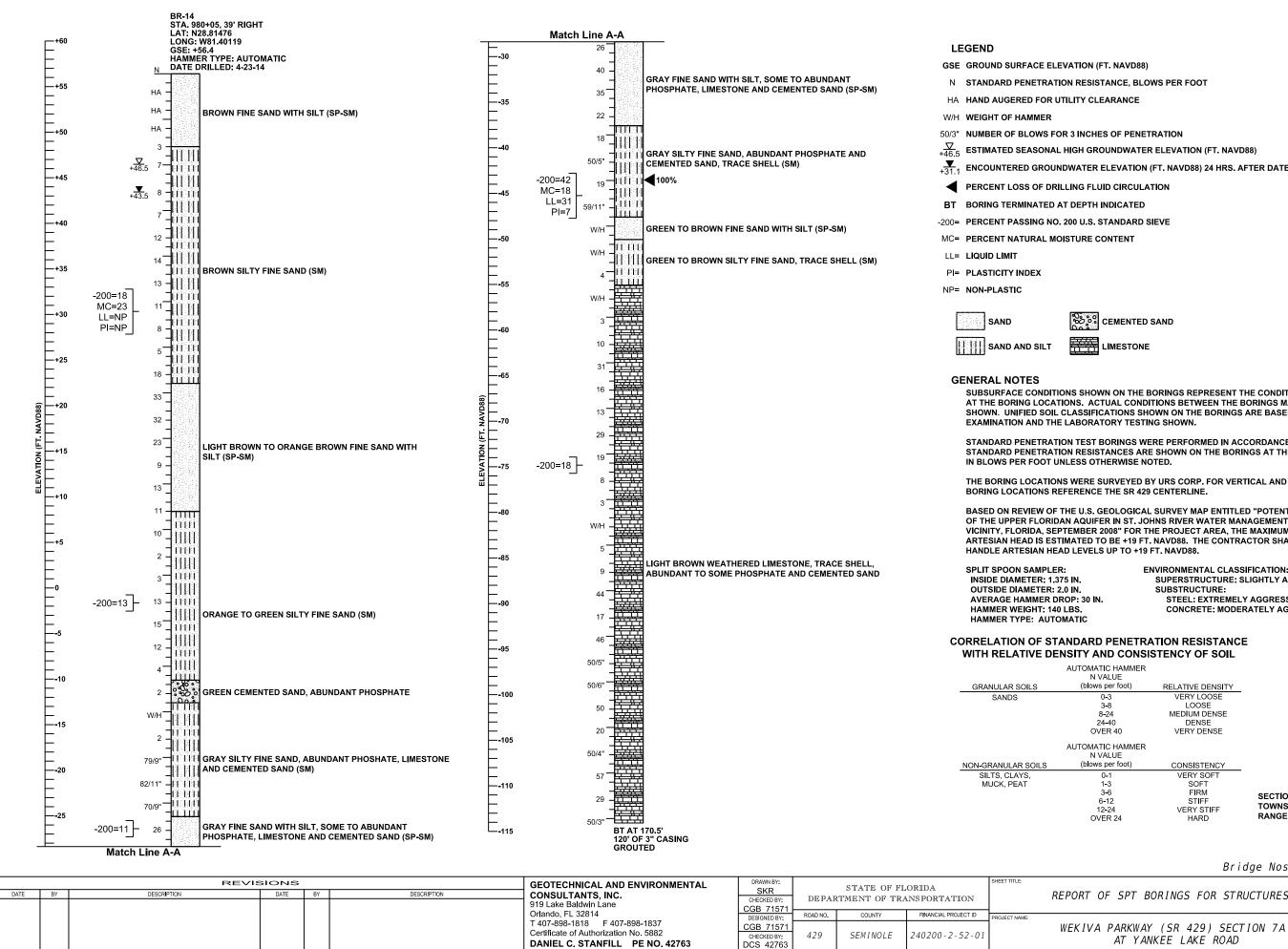
³⁸⁾ LOWS PER FOOT	
-	
IETRATION	
TER ELEVATION (FT. NAVD88)	
DN (FT. NAVD88) 24 HRS. AFTER DATE DRILLED	
ILATION	
D	
D SIEVE	
E	
-	
BORINGS REPRESENT THE CONDITIONS ENCOUNTERED DITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE HOWN ON THE BORINGS ARE BASED ON VISUAL 'ING SHOWN.	
VERE PERFORMED IN ACCORDANCE WITH ASTM D-1586. RE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN NOTED.	
BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL. 29 CENTERLINE.	
AL SURVEY MAP ENTITLED "POTENTIOMETRIC SURFACE OHNS RIVER WATER MANAGEMENT DISTRICT AND THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE T. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO 9 FT. NAVD88.	
ENVIRONMENTAL CLASSIFICATION: SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE SUBSTRUCTURE: STEEL: EXTREMELY AGGRESSIVE (pH=5.6) CONCRETE: MODERATELY AGGRESSIVE (pH=5.6)	
RATION RESISTANCE SISTENCY OF SOIL	
RELATIVE DENSITY	
VERY LOOSE	
MEDIUM DENSE DENSE VERY DENSE	
VERT DEINGE	
CONSISTENCY	
VERY SOFT SOFT	
FIRM SECTION: 22 STIFF TOWNSHIP: 19 SOUTH	
VERY STIFF TOWNSHIP. IS SOUTH HARD RANGE: 29 EAST	
Bridge Nos. 770101 &	770102
yeee, ,,eier a	REF. DWG. NO
ORT OF SPT BORINGS FOR STRUCTURES	

AT YANKEE LAKE ROAD 5/12/2015 2:26:23 PM J:\D109\3520G Wekiva Parkway Section 7A\b1boring08.dgn SHEET NO.

B3-4


CHECKED BY

DCS 42763


scott

DANIEL C. STANFILL PE NO. 42763

88)	
BLOWS PER FOOT	
E	
NETRATION	
TER ELEVATION (FT. NAVD88)	
ON (FT. NAVD88) 24 HRS. AFTER DATE DRILLED	
JLATION	
RCULATION	
ED	
RD SIEVE	
ND CLAY	
DNE	
IE BORINGS REPRESENT THE CONDITIONS ENCOUNTERED NDITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE SHOWN ON THE BORINGS ARE BASED ON VISUAL	
STING SHOWN. WERE PERFORMED IN ACCORDANCE WITH ASTM D-1586. ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN NOTED.	
D BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL. 429 CENTERLINE.	
CAL SURVEY MAP ENTITLED "POTENTIOMETRIC SURFACE JOHNS RIVER WATER MANAGEMENT DISTRICT AND R THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE FT. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO +19 FT. NAVD88.	
ENVIRONMENTAL CLASSIFICATION: SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE SUBSTRUCTURE: STEEL: EXTREMELY AGGRESSIVE (pH=5.6) CONCRETE: MODERATELY AGGRESSIVE (pH=5.6)	
IRATION RESISTANCE NSISTENCY OF SOIL	
RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE	
VERY DENSE	
ER	
CONSISTENCY VERY SOFT	
SOFT FIRM SECTION: 22	
STIFF TOWNSHIP: 19 SOUTH VERY STIFF RANGE: 29 EAST	
Bridge Nos. 770101 &	770102
ORT OF SPT BORINGS FOR STRUCTURES	REF. DWG. NO.
EVINA DADEWAY (CD 420) SECTION 74	SHEET NO.
EKIVA PARKWAY (SR 429) SECTION 7A AT YANKEE LAKE ROAD	B3-5

VD88)	
E, BLOWS PER FOOT	
NCE	
PENETRATION	
WATER ELEVATION (FT. NAVD88)	
ATION (FT. NAVD88) 24 HRS. AFTER DATE DRILLED	
RCULATION	
CIRCULATION	
ATED	
DARD SIEVE	
ΝΤ	
STONE	
THE BORINGS REPRESENT THE CONDITIONS ENCOUNTERED CONDITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE NS SHOWN ON THE BORINGS ARE BASED ON VISUAL TESTING SHOWN.	
GS WERE PERFORMED IN ACCORDANCE WITH ASTM D-1586. ES ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN ISE NOTED.	
YED BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL. SR 429 CENTERLINE.	
DGICAL SURVEY MAP ENTITLED "POTENTIOMETRIC SURFACE ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND FOR THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE +19 FT. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO O +19 FT. NAVD88.	
ENVIRONMENTAL CLASSIFICATION: SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE SUBSTRUCTURE: STEEL: EXTREMELY AGGRESSIVE (pH=5.6)	
CONCRETE: MODERATELY AGGRESSIVE (pH=5.6)	
IETRATION RESISTANCE ONSISTENCY OF SOIL	
ot) RELATIVE DENSITY	
VERY LOOSE LOOSE	
MEDIUM DENSE DENSE	
VERY DENSE	
MMER	
pt) CONSISTENCY VERY SOFT	
SOFT FIRM SECTION: 22	
VERY STIFF TOWNSHIP: 19 SOUTH	
HARD RANGE: 29 EAST	
Bridge Nos. 770101 &	770102
	REF. DWG. NO.
PORT OF SPT BORINGS FOR STRUCTURES	
EKIVA PARKWAY (SR 429) SECTION 7A	SHEET NO.
AT YANKEE LAKE ROAD	B3-6

N STANDARD PENETRATION RESISTANCE, BLOWS PER FOOT

 $\frac{\nabla}{+46.5}$ ESTIMATED SEASONAL HIGH GROUNDWATER ELEVATION (FT. NAVD88)

 $\mathbf{\Psi}_{+31.1}$ ENCOUNTERED GROUNDWATER ELEVATION (FT. NAVD88) 24 HRS. AFTER DATE DRILLED

လို CEMENTED SAND

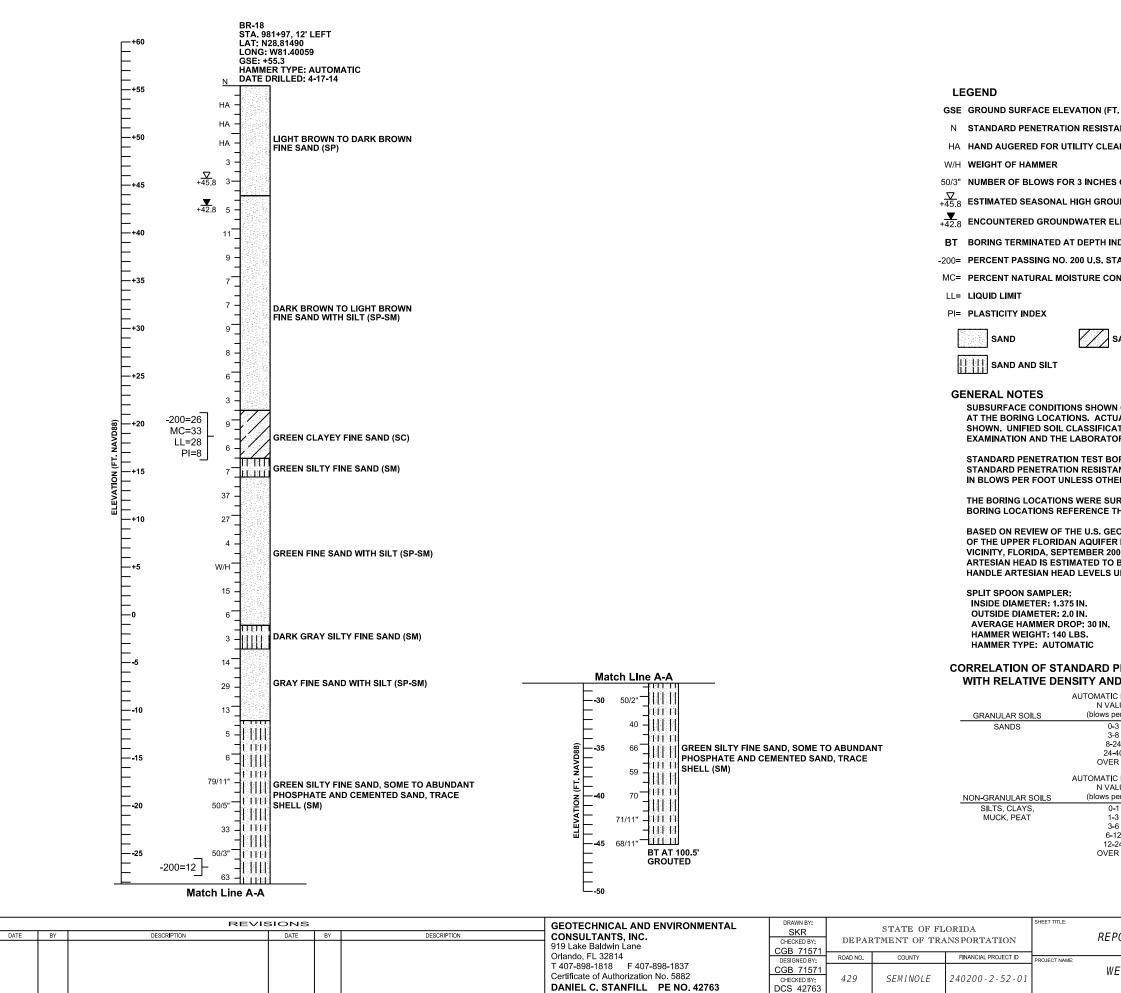
LIMESTONE

SUBSURFACE CONDITIONS SHOWN ON THE BORINGS REPRESENT THE CONDITIONS ENCOUNTERED AT THE BORING LOCATIONS. ACTUAL CONDITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE SHOWN. UNIFIED SOIL CLASSIFICATIONS SHOWN ON THE BORINGS ARE BASED ON VISUAL EXAMINATION AND THE LABORATORY TESTING SHOWN.

STANDARD PENETRATION TEST BORINGS WERE PERFORMED IN ACCORDANCE WITH ASTM D-1586. STANDARD PENETRATION RESISTANCES ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN IN BLOWS PER FOOT UNLESS OTHERWISE NOTED.

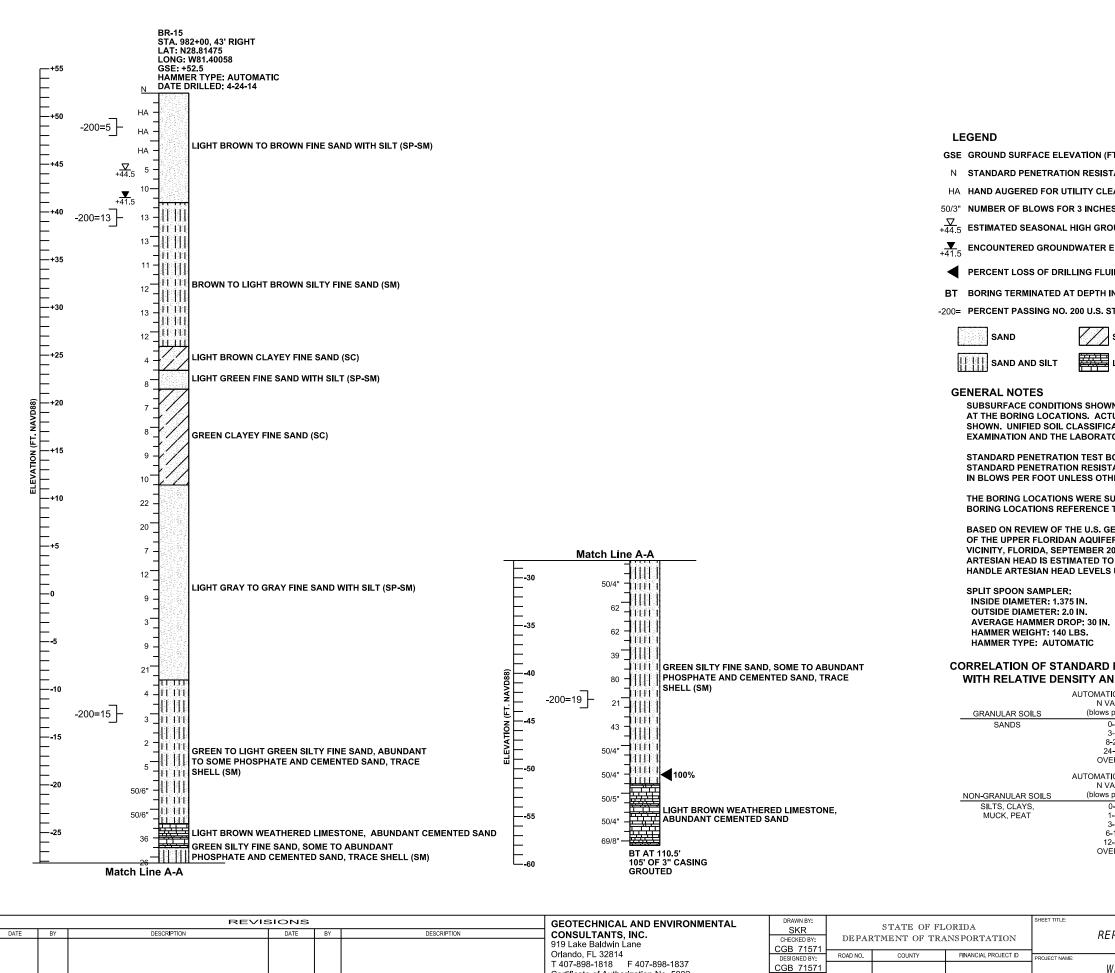
THE BORING LOCATIONS WERE SURVEYED BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL. BORING LOCATIONS REFERENCE THE SR 429 CENTERLINE.

BASED ON REVIEW OF THE U.S. GEOLOGICAL SURVEY MAP ENTITLED "POTENTIOMETRIC SURFACE OF THE UPPER FLORIDAN AQUIFER IN ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND VICINITY, FLORIDA, SEPTEMBER 2008" FOR THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE ARTESIAN HEAD IS ESTIMATED TO BE +19 FT. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO HANDLE ARTESIAN HEAD LEVELS UP TO +19 FT. NAVD88.


	ENVIRONMENTAL CLASSIFICATION:
5 IN.	SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE
DIN.	SUBSTRUCTURE:
OP: 30 IN.	STEEL: EXTREMELY AGGRESSIVE (pH=5.6)
BS.	CONCRETE: MODERATELY AGGRESSIVE (pH=5.6)
IATIC	

CORRELATION OF STANDARD PENETRATION RESISTANCE WITH RELATIVE DENSITY AND CONSISTENCY OF SOIL

AUTOMATIC HAMMER N VALUE (blows per foot)	RELATIVE DENSITY		
0-3 3-8 8-24 24-40 OVER 40	VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE	-	
AUTOMATIC HAMMER N VALUE (blows per foot)	CONSISTENCY		
0-1 1-3 3-6 6-12 12-24 OVER 24	VERY SOFT SOFT FIRM STIFF VERY STIFF HARD	SECTION: 22 TOWNSHIP: 19 SOUTH RANGE: 29 EAST	
	Bri	idge Nos. 770101 &	770102
PORT OF SPT BC) RINGS FOR STF	RUCTURES	REF. DWG. NO
			SHEET NO.


	YANKEE LAKE ROAD	
1 PM	IND109N3520G Wekiya Parkway Section 7ANh1horing08 don	

B3-7

DANIEL C. STANFILL PE NO. 42763

T. NAVD88)	
ANCE, BLOWS PER FOOT	
ARANCE	
S OF PENETRATION	
UNDWATER ELEVATION (FT. NAVD88)	
LEVATION (FT. NAVD88) 24 HRS. AFTER DATE DRILLED	
NDICATED	
FANDARD SIEVE	
DNTENT	
SAND AND CLAY	
N ON THE BORINGS REPRESENT THE CONDITIONS ENCOUNTERED UAL CONDITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE ATIONS SHOWN ON THE BORINGS ARE BASED ON VISUAL DRY TESTING SHOWN.	
DRINGS WERE PERFORMED IN ACCORDANCE WITH ASTM D-1586. ANCES ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN ERWISE NOTED.	
IRVEYED BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL. THE SR 429 CENTERLINE.	
EOLOGICAL SURVEY MAP ENTITLED "POTENTIOMETRIC SURFACE R IN ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND)08" FOR THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE BE +19 FT. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO UP TO +19 FT. NAVD88.	
ENVIRONMENTAL CLASSIFICATION: SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE	
SUBSTRUCTURE: STEEL: EXTREMELY AGGRESSIVE (pH=5.6) CONCRETE: MODERATELY AGGRESSIVE (pH=5.6)	
PENETRATION RESISTANCE	
LUE Der foot) RELATIVE DENSITY	
3 VERY LOOSE	
-8 LOOSE 24 MEDIUM DENSE	
40 DENSE R 40 VERY DENSE	
CHAMMER	
LUE per foot) CONSISTENCY	
1 VERY SOFT 3 SOFT	
6 FIRM	
24 VERY STIFF TOWNSHIP: 19 SOUTH	
R 24 HARD RANGE: 29 EAST	
Bridge Nos. 770101 &	770102 REF. DWG. NO.
PORT OF SPT BORINGS FOR STRUCTURES	
EKIVA PARKWAY (SR 429) SECTION 7A	SHEET NO.
AT YANKEE LAKE ROAD	B3-8

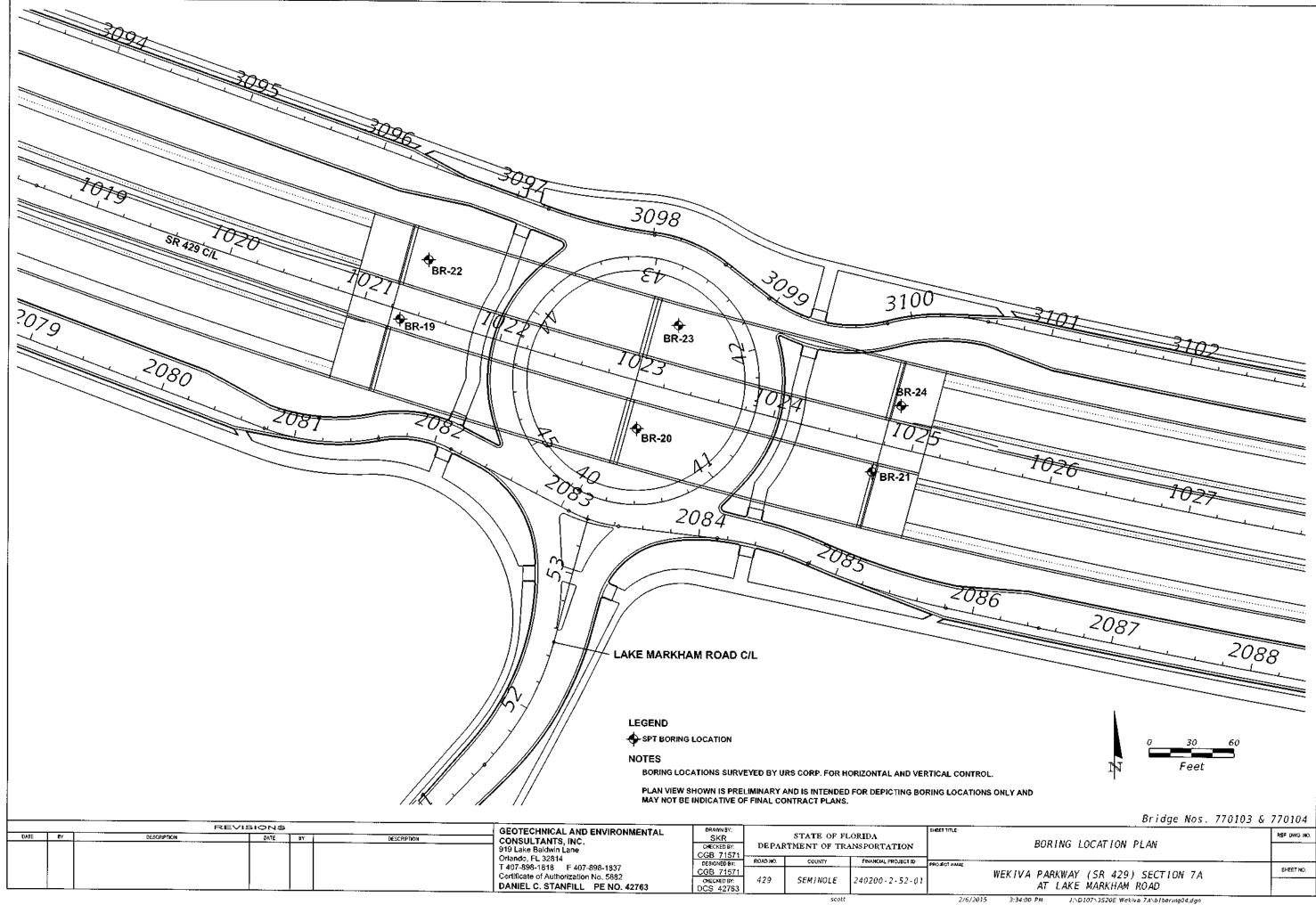
DANIEL C. STANFILL PE NO. 42763

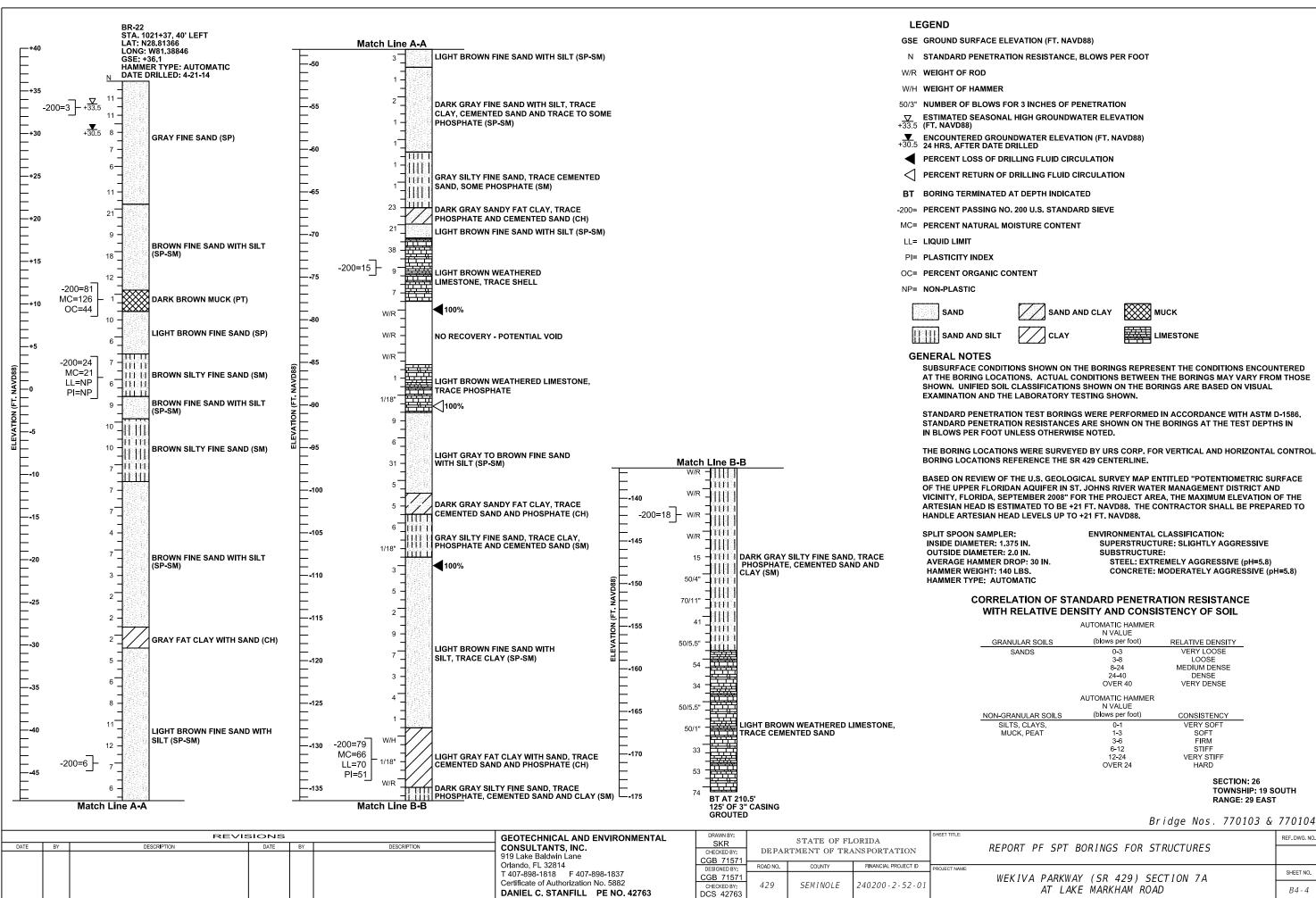
SEMINOLE

scott

429

CHECKED BY


DCS 42763


240200 - 2 - 52 - 01

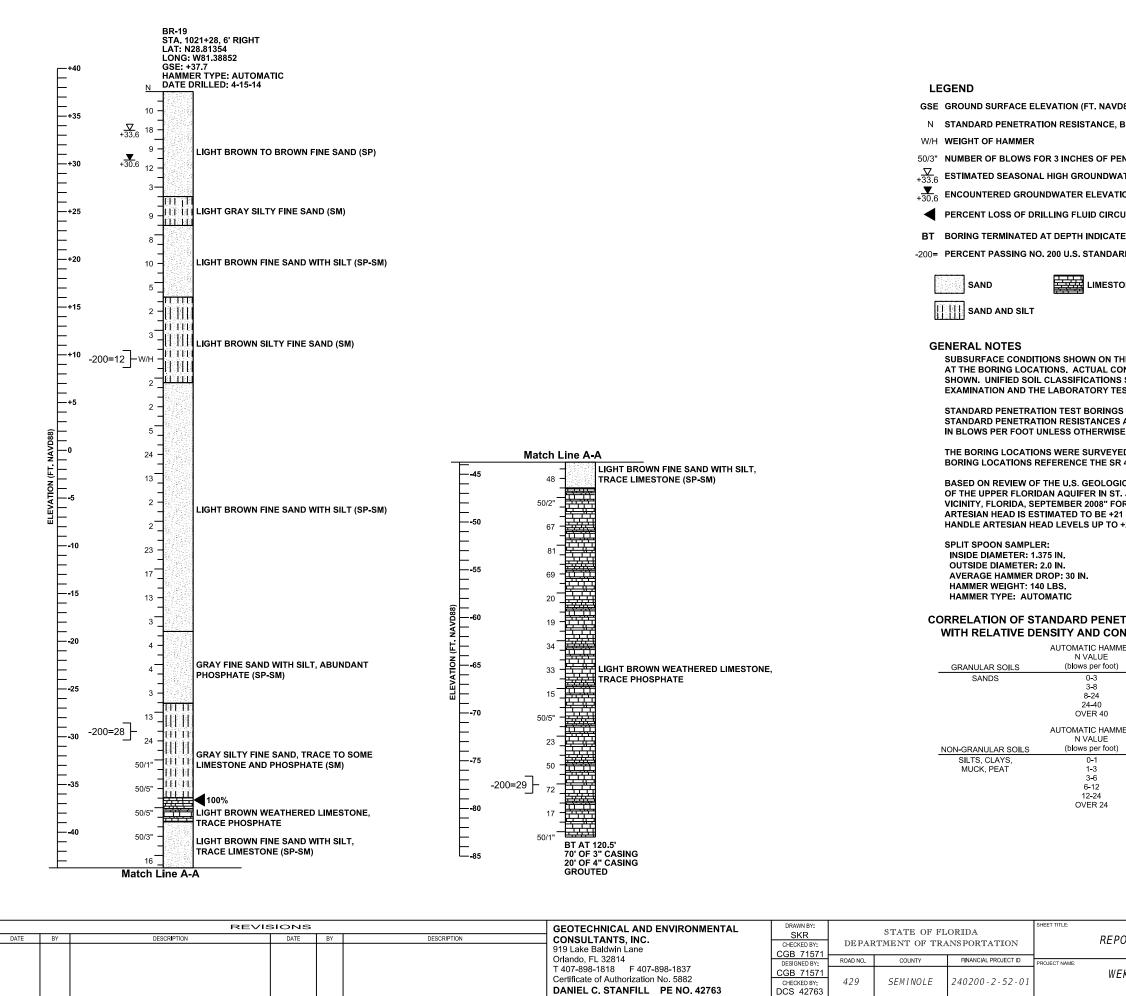
T NAV(D00)	
T. NAVD88) ANCE, BLOWS PER FOOT	
ARANCE	
S OF PENETRATION	
UNDWATER ELEVATION (FT. NAVD88)	
ELEVATION (FT. NAVD88) 24 HRS. AFTER DATE DRILLED	
D CIRCULATION	
NDICATED	
TANDARD SIEVE	
SAND AND CLAY	
LIMESTONE	
N ON THE BORINGS REPRESENT THE CONDITIONS ENCOUNTERED UAL CONDITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE	
ATIONS SHOWN ON THE BORINGS ARE BASED ON VISUAL ORY TESTING SHOWN.	
ORINGS WERE PERFORMED IN ACCORDANCE WITH ASTM D-1586.	
ANCES ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN ERWISE NOTED.	
JRVEYED BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL. THE SR 429 CENTERLINE.	
EOLOGICAL SURVEY MAP ENTITLED "POTENTIOMETRIC SURFACE	
R IN ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND 008" FOR THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE	
BE +19 FT. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO UP TO +19 FT. NAVD88.	
ENVIRONMENTAL CLASSIFICATION:	
SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE	
SUBSTRUCTURE: STEEL: EXTREMELY AGGRESSIVE (pH=5.6)	
CONCRETE: MODERATELY AGGRESSIVE (pH=5.6)	
PENETRATION RESISTANCE	
D CONSISTENCY OF SOIL	
per foot) RELATIVE DENSITY	
-3 VERY LOOSE -8 LOOSE	
24 MEDIUM DENSE -40 DENSE	
R 40 VERY DENSE	
C HAMMER ALUE	
Der foot) CONSISTENCY -1 VERY SOFT	
-3 SOFT	
-6 FIRM 12 STIFF SECTION: 22	
-24VERY STIFFTOWNSHIP: 19 SOUTHR 24HARDRANGE: 29 EAST	
Bridge Nos. 770101 &	770102
	REF. DWG. NO.
PORT OF SPT BORINGS FOR STRUCTURES	
EKIVA PARKWAY (SR 429) SECTION 7A	SHEET NO.
AT YANKEE LAKE ROAD	B3-9

BORING LOCATION PLAN AND REPORT OF SPT BORINGS

SR 429 OVER LAKE MARKHAM ROAD

AT THE BORING LOCATIONS. ACTUAL CONDITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE

STANDARD PENETRATION RESISTANCES ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN

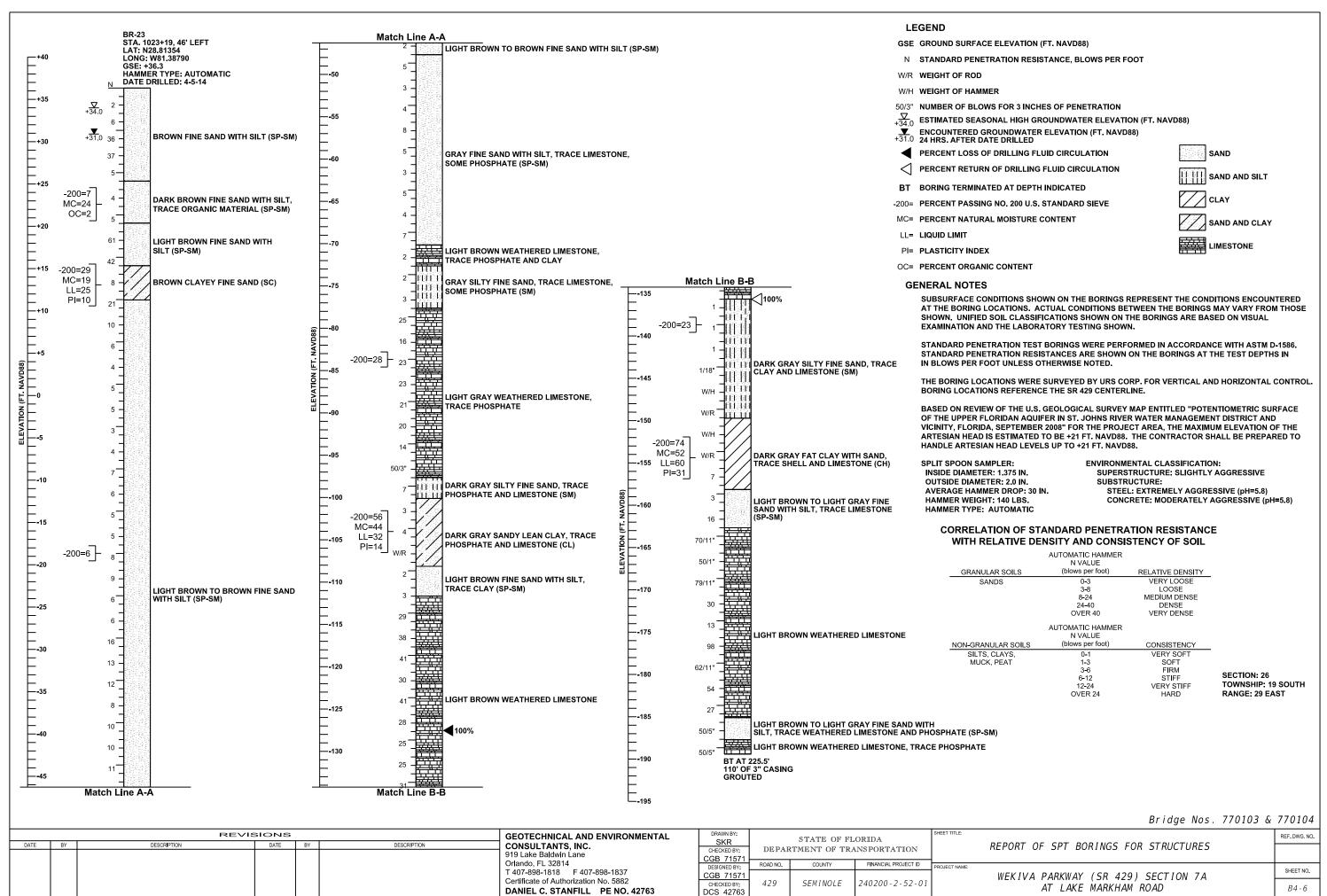

OF THE UPPER FLORIDAN AQUIFER IN ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND VICINITY, FLORIDA, SEPTEMBER 2008" FOR THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE ARTESIAN HEAD IS ESTIMATED TO BE +21 FT. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO

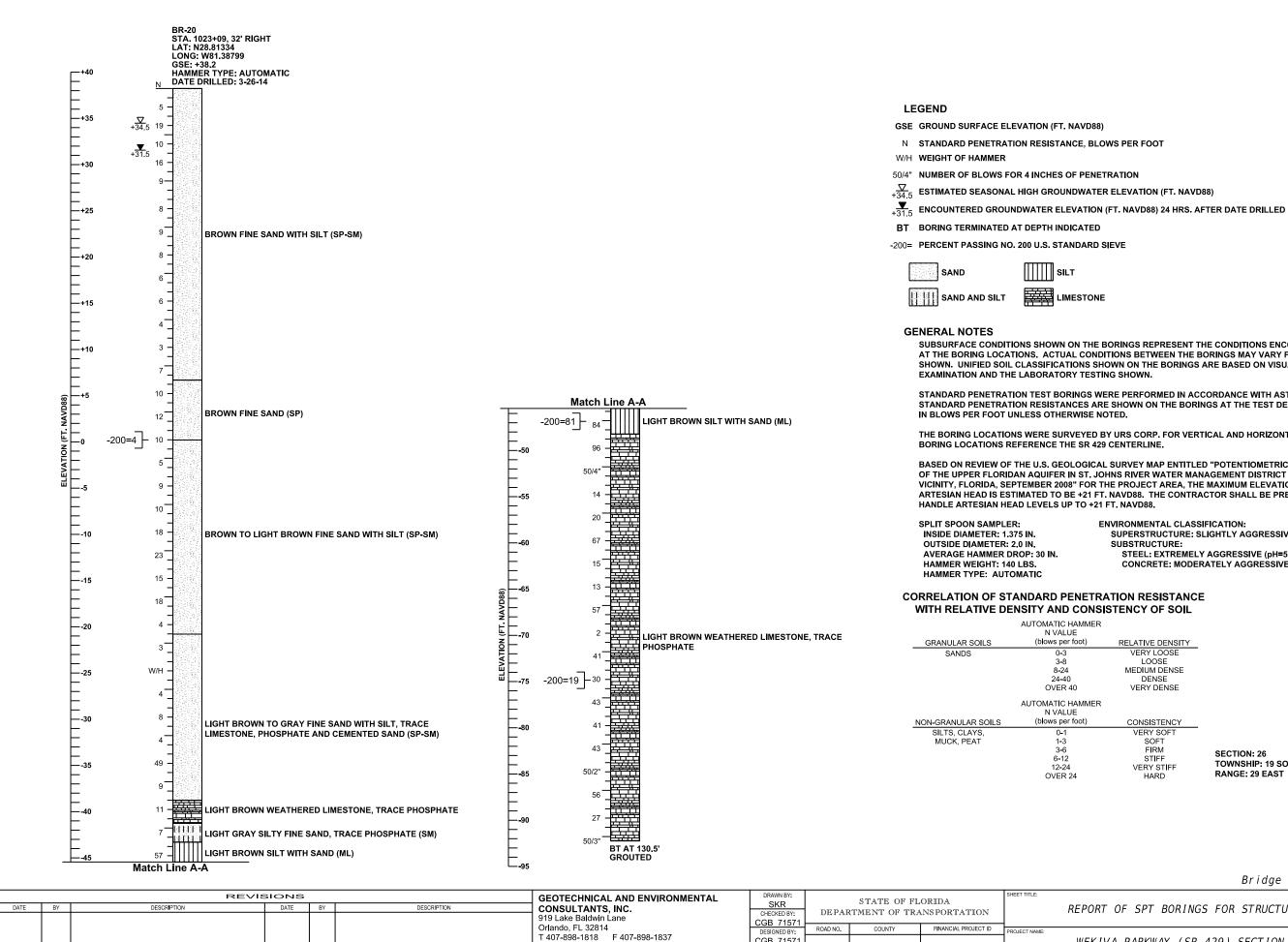
ER:	ENVIRONMENTAL CLASSIFICATION:
.375 IN.	SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE
2.0 IN.	SUBSTRUCTURE:
DROP: 30 IN.	STEEL: EXTREMELY AGGRESSIVE (pH=5.8)
40 LBS.	CONCRETE: MODERATELY AGGRESSIVE (pH=5.8)
TOMATIC	

CORRELATION OF STANDARD PENETRATION RESISTANCE WITH RELATIVE DENSITY AND CONSISTENCY OF SOIL

	AUTOMATIC HAMMEF	र		
ANULAR SOILS	(blows per foot)	RELATIVE DENSITY		
SANDS	0-3	VERY LOOSE		
	3-8	LOOSE		
	8-24 24-40	MEDIUM DENSE		
	24-40 OVER 40	DENSE VERY DENSE		
	OVER 40	VERT DENSE		
	AUTOMATIC HAMMEF N VALUE	र		
GRANULAR SOILS	(blows per foot)	CONSISTENCY		
ILTS, CLAYS,	0-1	VERY SOFT		
MUCK, PEAT	1-3	SOFT		
	3-6	FIRM		
	6-12 12-24	STIFF VERY STIFF		
	0VER 24	HARD		
	OVER 24	HARD		
		SECTION TOWNSH RANGE:	IIP: 19 S	
	E	Bridge Nos. 7701	103 &	770104
				REF. DWG. NO.
PORT PF SPT	BORINGS FOR S	STRUCTURES		
EKIVA PARKW	AY (SR 429) S	ECTION 7A		SHEET NO.
	KE MARKHAM RO			B1 - 1

J:\D109\3520G Wekiva Parkwav Section 7A\b1boring08.dgn




AVD88)	
CE, BLOWS PER FOOT	
F PENETRATION DWATER ELEVATION (FT. NAVD88)	
/ATION (FT. NAVD88) 24 HRS. AFTER DATE DRILLED	
DARD SIEVE	
STONE	
N THE BORINGS REPRESENT THE CONDITIONS ENCOUNTERED	
L CONDITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE DNS SHOWN ON THE BORINGS ARE BASED ON VISUAL	
Y TESTING SHOWN.	
NGS WERE PERFORMED IN ACCORDANCE WITH ASTM D-1586. CES ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN	
WISE NOTED.	
EYED BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL.	
SR 429 CENTERLINE.	
OGICAL SURVEY MAP ENTITLED "POTENTIOMETRIC SURFACE I ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND	
' FOR THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE +21 FT. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO	
TO +21 FT. NAVD88.	
ENVIRONMENTAL CLASSIFICATION:	
SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE SUBSTRUCTURE:	
STEEL: EXTREMELY AGGRESSIVE (pH=5.8) CONCRETE: MODERATELY AGGRESSIVE (pH=5.8)	
NETRATION RESISTANCE	
VERY LOOSE	
LOOSE MEDIUM DENSE DENSE	
DENSE D VERY DENSE	
AMMER	
oot) CONSISTENCY VERY SOFT	
SOFT FIRM	
STIFF SECTION: 26 VERY STIFF TOWNSHIP: 19 SOUTH	
4 HARD RANGE: 29 EAST	
D-: N 770100 C	770104
Bridge Nos. 770103 &	
EPORT OF SPT BORINGS FOR STRUCTURES	REF. DWG. NO.
WEKIVA PARKWAY (SR 429) SECTION 7A	SHEET NO.

5/12/2015 1:49:06 PM J:\D109\3520G Wekiva Parkway Section 7A\b1boring08.dgn

B4 - 5

AT LAKE MARKHAM ROAD

DANIEL C. STANFILL PE NO. 42763

CGB 71571

CHECKED BY

DCS 42763

429

SEMINOLE

scott

240200 - 2 - 52 - 01

|--|

SUBSURFACE CONDITIONS SHOWN ON THE BORINGS REPRESENT THE CONDITIONS ENCOUNTERED AT THE BORING LOCATIONS. ACTUAL CONDITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE SHOWN. UNIFIED SOIL CLASSIFICATIONS SHOWN ON THE BORINGS ARE BASED ON VISUAL

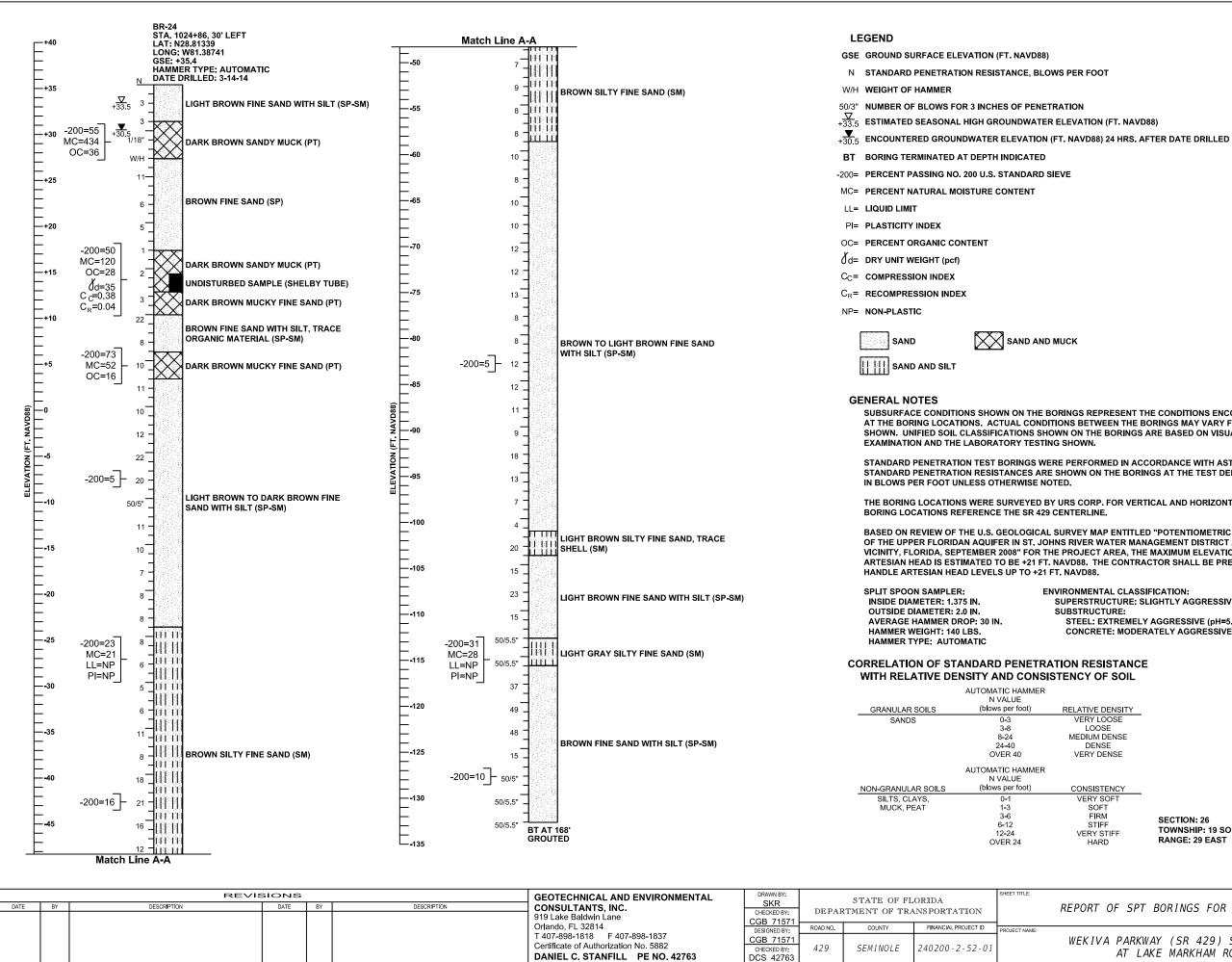
STANDARD PENETRATION TEST BORINGS WERE PERFORMED IN ACCORDANCE WITH ASTM D-1586. STANDARD PENETRATION RESISTANCES ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN

THE BORING LOCATIONS WERE SURVEYED BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL.

BASED ON REVIEW OF THE U.S. GEOLOGICAL SURVEY MAP ENTITLED "POTENTIOMETRIC SURFACE OF THE UPPER FLORIDAN AQUIFER IN ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND VICINITY, FLORIDA, SEPTEMBER 2008" FOR THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE ARTESIAN HEAD IS ESTIMATED TO BE +21 FT. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO

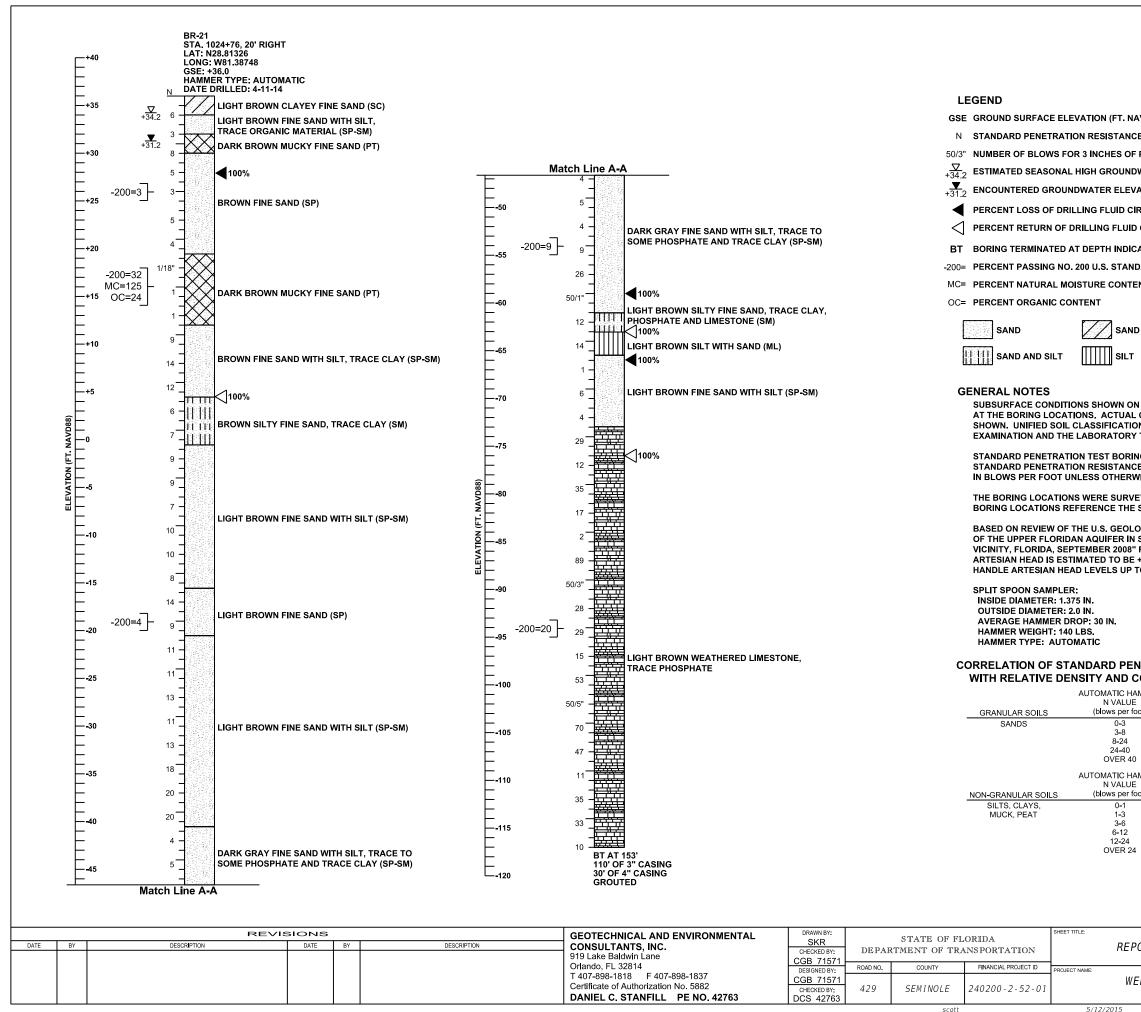
> ENVIRONMENTAL CLASSIFICATION: SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE SUBSTRUCTURE: STEEL: EXTREMELY AGGRESSIVE (pH=5.8) CONCRETE: MODERATELY AGGRESSIVE (pH=5.8)

RELATIVE DENSITY VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE


CONSISTENCY VERY SOFT SOFT FIRM STIFF VERY STIFF HARD

SECTION: 26 TOWNSHIP: 19 SOUTH RANGE: 29 EAST

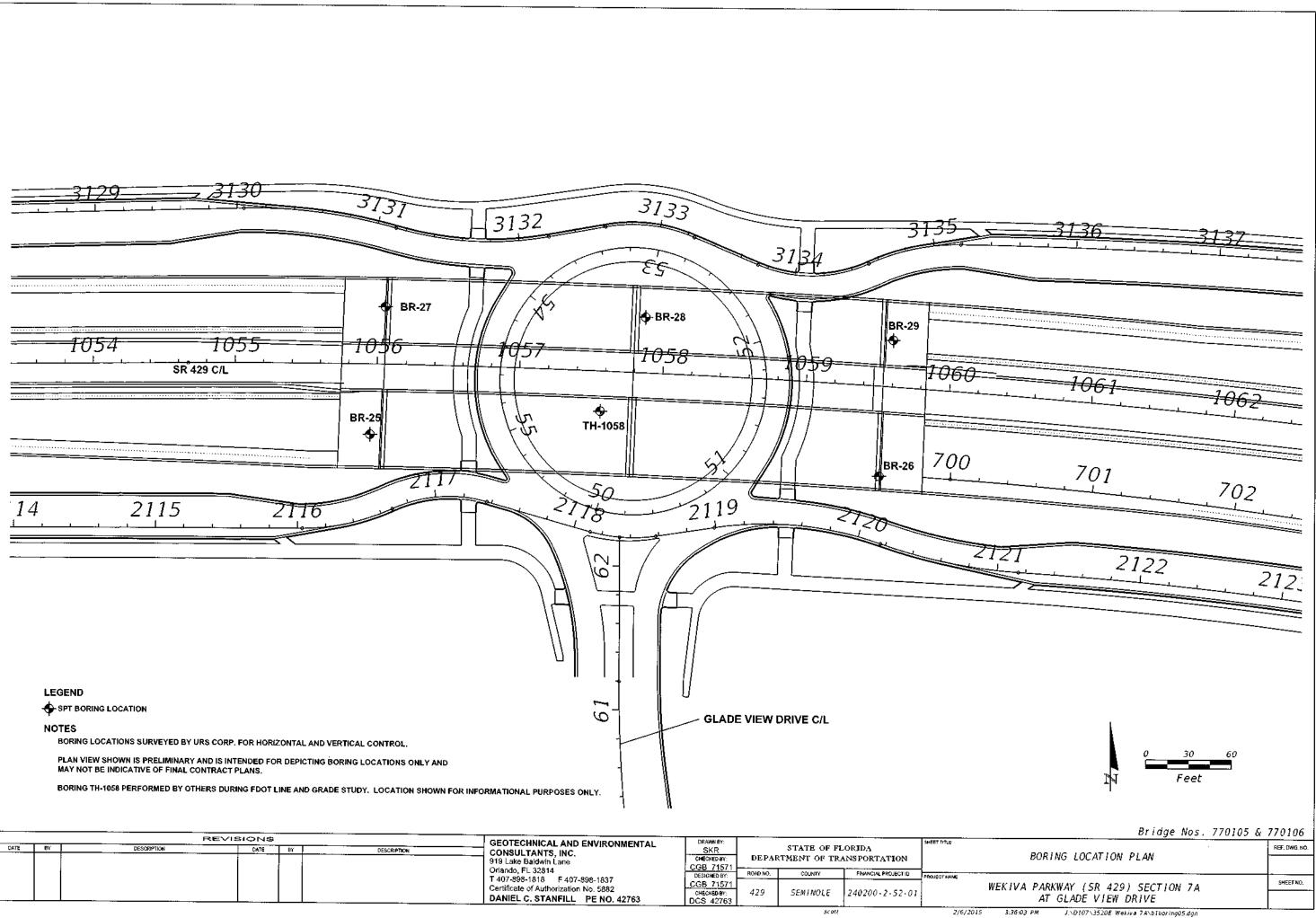
Bridge Nos. 770103 & 770104


PART OF CRT ROBINGS FOR STRUCTURES	REF. DWG. NO.
PORT OF SPT BORINGS FOR STRUCTURES	
EKIVA PARKWAY (SR 429) SECTION 7A	SHEET NO.
AT LAKE MARKHAM ROAD	B4 - 7

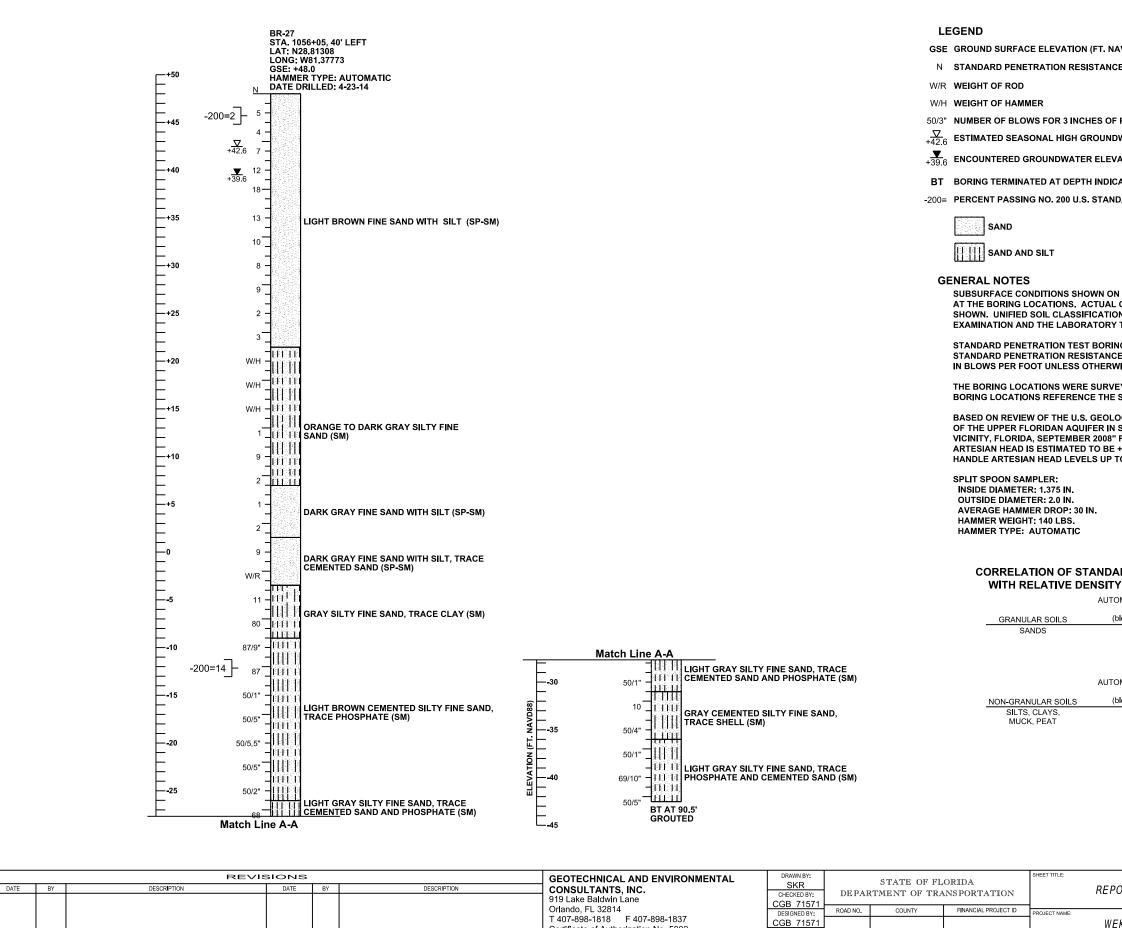
J:\D109\3520G Wekiva Parkway Section 7A\b1boring08.dgn

IS REPRESENT THE CONDITIONS ENCOUNTERED BETWEEN THE BORINGS MAY VARY FROM THOSE N THE BORINGS ARE BASED ON VISUAL WN.	
RFORMED IN ACCORDANCE WITH ASTM D-1586. VN ON THE BORINGS AT THE TEST DEPTHS IN	
CORP. FOR VERTICAL AND HORIZONTAL CONTROL. ERLINE.	
EY MAP ENTITLED "POTENTIOMETRIC SURFACE VER WATER MANAGEMENT DISTRICT AND DJECT AREA, THE MAXIMUM ELEVATION OF THE 88. THE CONTRACTOR SHALL BE PREPARED TO VD88.	
IMENTAL CLASSIFICATION: RSTRUCTURE: SLIGHTLY AGGRESSIVE TRUCTURE: EEL: EXTREMELY AGGRESSIVE (pH=5.8) NCRETE: MODERATELY AGGRESSIVE (pH=5.8)	
I RESISTANCE CY OF SOIL	
ATIVE DENSITY /ERY LOOSE LOOSE EDIUM DENSE DENSE /ERY DENSE	
ONSISTENCY VERY SOFT SOFT FIRM SECTION: 26 STIFF TOWNSHIP: 19 SOUTH HARD RANGE: 29 EAST	
Bridge Nos. 770103 &	770104
PORT OF SPT BORINGS FOR STRUCTURES	REF. DWG. NO.
EKIVA PARKWAY (SR 429) SECTION 7A AT LAKE MARKHAM ROAD	SHEET NO.

5/12/2015 1:51:26 PM J:\D109\3520G Wekiva Parkway Section 7A\b1boring08.dgn



NAVD88)					
ICE, BLOWS PER FOOT					
OF PENETRATION					
IDWATER ELEVATION (F	T. NAVD88)				
VATION (FT. NAVD88) 2	1 HRS. AFTEF	R DATE DRILLI	ED		
CIRCULATION					
ID CIRCULATION					
ICATED					
NDARD SIEVE					
TENT					
ND AND CLAY	LIMESTONE	E			
т 🕅	SAND AND	миск			
	1				
ON THE BORINGS REPR					
IONS SHOWN ON THE B RY TESTING SHOWN.					
RINGS WERE PERFORME ICES ARE SHOWN ON T RWISE NOTED.					
VEYED BY URS CORP. F IE SR 429 CENTERLINE.	OR VERTICA	L AND HORIZO	ONTAL CO	ONTROL.	
LOGICAL SURVEY MAP N ST. JOHNS RIVER WA 8" FOR THE PROJECT A E +21 FT. NAVD88. THE P TO +21 FT. NAVD88.	TER MANAGE REA, THE MA	EMENT DISTRI XIMUM ELEVA	CT AND	THE	
ENVIRONMENTA	L CLASSIFIC.	ATION:			
	TURE: SLIGH	ITLY AGGRES	SIVE		
STEEL: EX	FREMELY AG	GRESSIVE (pH		- 0)	
CONCRETE	: MODERATE	ELY AGGRESS	IVE (рн=:	5.8)	
ENETRATION RESIS					
HAMMER					
JE foot) RELATIVE DE	NSITY				
VERY LOO LOOSE					
) MEDIUM DE DENSE					
40 VERY DEM	ISE				
HAMMER JE					
r foot) CONSISTE VERY SC					
SOFT FIRM	s	SECTION: 26			
STIFF VERY ST	FF T	OWNSHIP: 19			
24 HARD	ľ				
		Bridge	Nos.	770103	& 77010
					REF. DWG. N


PORT OF SPT BORINGS FOR STRUCTURES	
EKIVA PARKWAY (SR 429) SECTION 7A	SHEET NO.
AT LAKE MARKHAM ROAD	B4 - 9

BORING LOCATION PLAN AND REPORT OF SPT BORINGS

SR 429 OVER GLADE VIEW DRIVE

_				REVISIONS			GEOTECHNICAL AND ENVIRONMENTAL	DRAWN BY:				SHEET TITLE	
	TE	BY	 DESCRIPTION	DATE	BY	DESCRIPTION	CONSULTANTS, INC. 919 Lake Baldwin Lane	SKR CHECKED BY:	DEPAI	STATE OF FI TMENT OF TR.	LORIDA ANSPORTATION		
		i			ĺ		Orlando, FL 32814 T 407-898-1818 F 407-898-1837	CGB 71571 DESIGNED BY:	ROAD NO.	ÇOUNTY	FINANCIAL PROJECT ID	PROJECT NAME	
			 				Certificate of Authorization No. 5882 DANIEL C. STANFILL PE NO. 42763	CGB 71571 CHECKED BY: DCS 42763	429	SEMINOLE	240200-2-52-01		WEKIV

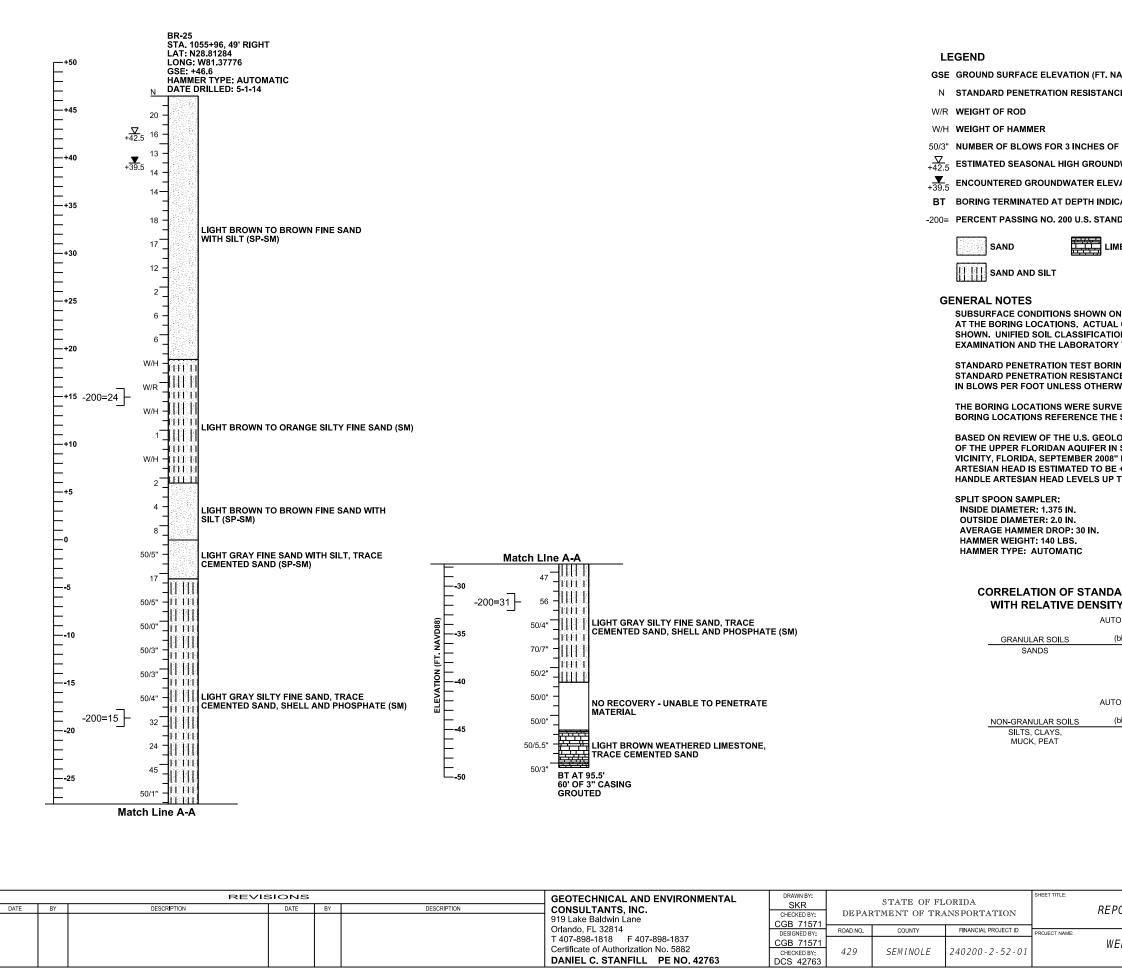
DANIEL C. STANFILL PE NO. 42763

scott 5/1

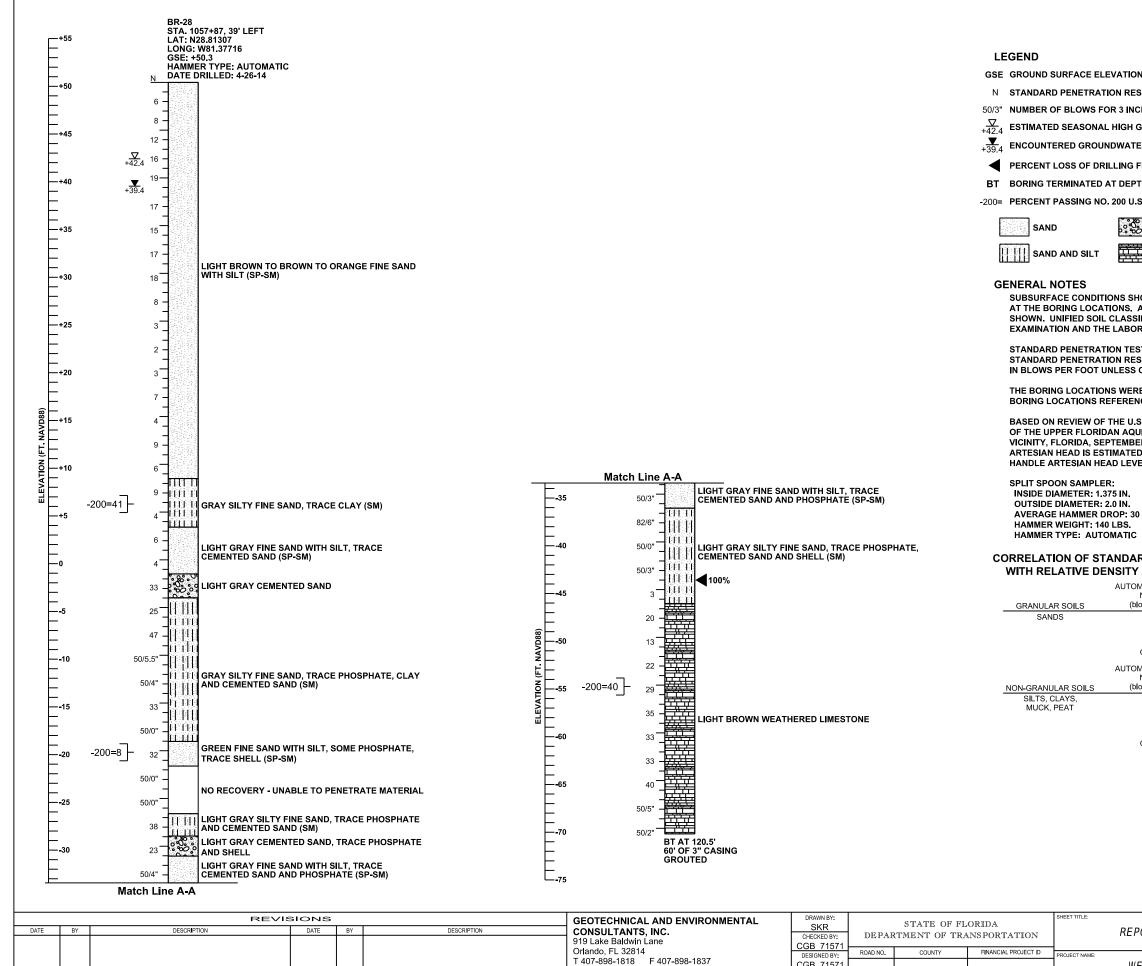
240200 - 2 - 52 - 01

SEMINOLE

429


CHECKED BY

DCS 42763


5,12,2015

VD88)					
E, BLOWS PER FOO	Г				
ATION (FT. NAVD88)	24 HRS. AFTER L		ED		
DARD SIEVE					
I THE BORINGS REPI	RESENT THE CO	NDITIONS E	NCOUN	TERED	
CONDITIONS BETWE	EN THE BORING	S MAY VAF	Y FRON		
TESTING SHOWN.			OUAL		
IGS WERE PERFORM					
ISE NOTED.	IIIE BORINGS A		DEFIN	5 114	
YED BY URS CORP.		AND HORIZ	ONTAL O	CONTROL.	
SR 429 CENTERLINE					
OGICAL SURVEY MAI	ATER MANAGEM	IENT DISTRI	CT AND		
FOR THE PROJECT / +22 FT. NAVD88. THI					
O +22 FT. NAVD88.					
SUPERSTRU	AL CLASSIFICAT		SIVE		
	KTREMELY AGGI				
CONCRET	E: MODERATEL	Y AGGRESS	SIVE (pH	=5.3)	
RD PENETRATIC	ON RESISTAN	CE			
AND CONSISTE	NCY OF SOIL	-			
MATIC HAMMER N VALUE					
0-3	ELATIVE DENSITY VERY LOOSE				
3-8 8-24	LOOSE MEDIUM DENSE				
24-40 OVER 40	DENSE VERY DENSE				
MATIC HAMMER N VALUE					
lows per foot) 0-1	CONSISTENCY VERY SOFT	_			
1-3 3-6	SOFT FIRM		0507		
6-12 12-24	STIFF VERY STIFF		TOWN	ON: 26 ISHIP: 19 SO	UTH
OVER 24	HARD		RANG	E: 29 EAST	
		_			
		Bridge	Nos.	770105	& 770106
		CTDUCT			REF. DWG. NO

REPORT OF SPT BORINGS FOR STRUCTURES			
WEKIVA PARKWAY (SR 429) SECTION 7A			
AT GLADE VIEW DRIVE	B5-4		

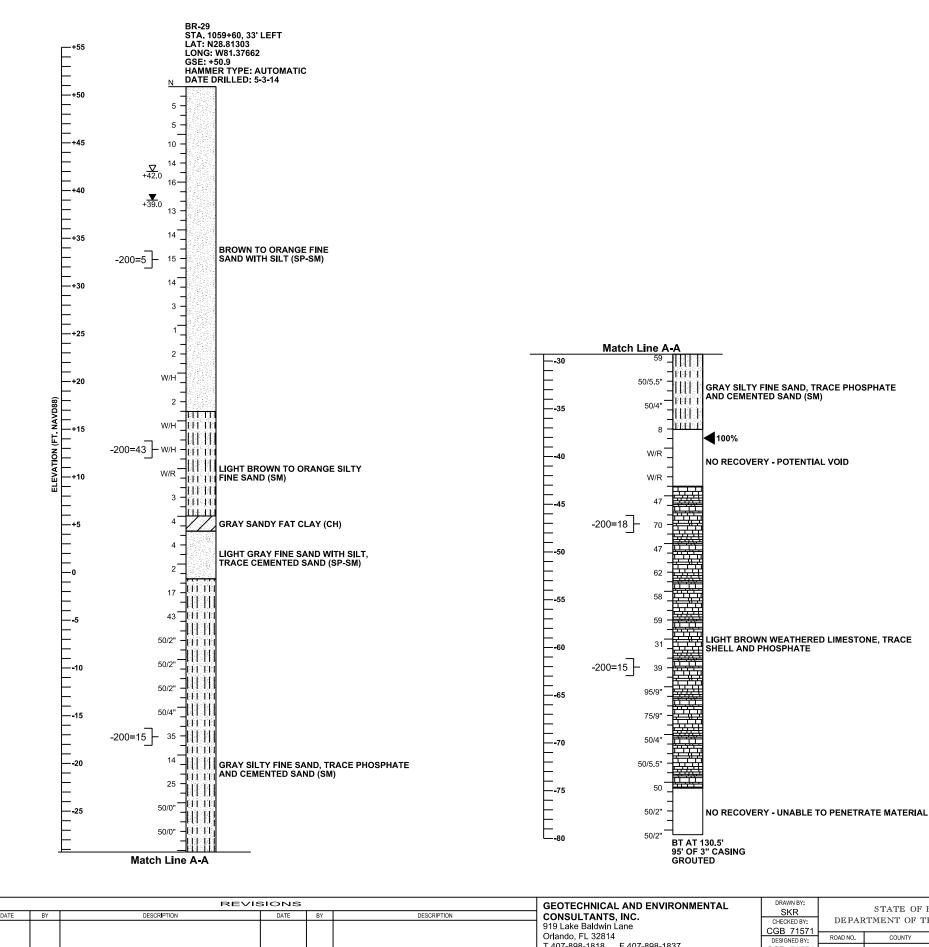
AVD88)		
E, BLOWS PER FOOT		
PENETRATION		
WATER ELEVATION (FT. NAVD88)		
ATION (FT. NAVD88) 24 HRS. AFTER	DATE DRILLED	
ATED		
DARD SIEVE		
IESTONE		
N THE BORINGS REPRESENT THE CO CONDITIONS BETWEEN THE BORING ONS SHOWN ON THE BORINGS ARE E TESTING SHOWN.	GS MAY VARY FROM THOSE	
NGS WERE PERFORMED IN ACCORD. SES ARE SHOWN ON THE BORINGS A VISE NOTED.		
EYED BY URS CORP. FOR VERTICAL SR 429 CENTERLINE.	AND HORIZONTAL CONTROL.	
OGICAL SURVEY MAP ENTITLED "PO ST. JOHNS RIVER WATER MANAGEM FOR THE PROJECT AREA, THE MAX +22 FT. NAVD88. THE CONTRACTOR	IENT DISTRICT AND IMUM ELEVATION OF THE	
TO +22 FT. NAVD88. ENVIRONMENTAL CLASSIFICAT	ΓΙΟΝ:	
SUPERSTRUCTURE: SLIGHT SUBSTRUCTURE:	LY AGGRESSIVE	
STEEL: EXTREMELY AGG CONCRETE: MODERATEL		
ARD PENETRATION RESISTAN		
Y AND CONSISTENCY OF SOII	L	
N VALUE blows per foot) RELATIVE DENSITY	/	
0-3 VERY LOOSE 3-8 LOOSE		
8-24 MEDIUM DENSE 24-40 DENSE		
OVER 40 VERY DENSE		
DMATIC HAMMER N VALUE		
0-1 VERY SOFT	_	
1-3 SOFT 3-6 FIRM	SECTION: 26	
6-12 STIFF 12-24 VERY STIFF OVER 24 HARD	TOWNSHIP: 19 SOUT RANGE: 29 EAST	н
OVER 24 HARD	KANGE. 23 EAST	
		770100
	Bridge Nos. 770105 &	
ORT OF SPT BORINGS FOR	STRUCTURES	REF. DWG. NO.
		OUEET NO
KIVA PARKWAY (SR 429) AT GLADE VIEW DR		SHEET NO.
AI ULAVE VIEW UK		B5 - 5

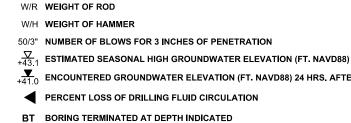
DANIEL C. STANFILL PE NO. 42763

CGB 71571

CHECKED BY

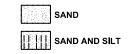
DCS 42763


429


SEMINOLE

scott

240200 - 2 - 52 - 01


DN (FT. NAVD88)		
SISTANCE, BLOWS PER FOOT	-	
CHES OF PENETRATION		
GROUNDWATER ELEVATION	(FT. NAVD88)	
ER ELEVATION (FT, NAVD88)	24 HRS. AFTER DATE DRILLED	
FLUID CIRCULATION		
.S. STANDARD SIEVE		
CEMENTED SAND		
ACTUAL CONDITIONS BETWE	RESENT THE CONDITIONS ENCOUNTERE EN THE BORINGS MAY VARY FROM THO BORINGS ARE BASED ON VISUAL	
	IED IN ACCORDANCE WITH ASTM D-1586 THE BORINGS AT THE TEST DEPTHS IN	5.
RE SURVEYED BY URS CORP. NCE THE SR 429 CENTERLINE	FOR VERTICAL AND HORIZONTAL CONT	ROL.
UIFER IN ST. JOHNS RIVER W	PENTITLED "POTENTIOMETRIC SURFAC ATER MANAGEMENT DISTRICT AND AREA, THE MAXIMUM ELEVATION OF TH	
D TO BE +22 FT. NAVD88. THI /ELS UP TO +22 FT. NAVD88.	E CONTRACTOR SHALL BE PREPARED T	0
	AL CLASSIFICATION:	
SUPERSTRU	CTURE: SLIGHTLY AGGRESSIVE	
	(TREMELY AGGRESSIVE (pH=5.3)	
CONCRET	E: MODERATELY AGGRESSIVE (pH=5.3)	
	STANCE	
RD PENETRATION RESI		
MATIC HAMMER		
N VALUE plows per foot) RELATIVE D	ENSITY	
0-3 VERY LC 3-8 LOOS		
8-24 MEDIUM D 24-40 DENS	ENSE	
OVER 40 VERY DE		
MATIC HAMMER N VALUE		
olows per foot) CONSIST		
0-1 VERY SI 1-3 SOF	ſ	
3-6 FIRM 6-12 STIFI	- SECTION: 26	пты
12-24 VERY S OVER 24 HARI		om
	Bridge Nos. 770105	& 770106
		REF. DWG. NO.
PORT OF SPT BORINGS	5 FOR STRUCTURES	
		SHEET NO.
'EKIVA PARKWAY (SR		

LEGEND

-200= PERCENT PASSING NO. 200 U.S. STANDARD SIEVE

GENERAL NOTES

SUBSURFACE CONDITIONS SHOWN ON THE BORINGS REPRESENT THE CONDITIONS ENCOUNTERED AT THE BORING LOCATIONS. ACTUAL CONDITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE SHOWN. UNIFIED SOIL CLASSIFICATIONS SHOWN ON THE BORINGS ARE BASED ON VISUAL EXAMINATION AND THE LABORATORY TESTING SHOWN.

STANDARD PENETRATION TEST BORINGS WERE PERFORMED IN ACCORDANCE WITH ASTM D-1586. STANDARD PENETRATION RESISTANCES ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN IN BLOWS PER FOOT UNLESS OTHERWISE NOTED.

THE BORING LOCATIONS WERE SURVEYED BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL. BORING LOCATIONS REFERENCE THE SR 429 CENTERLINE.

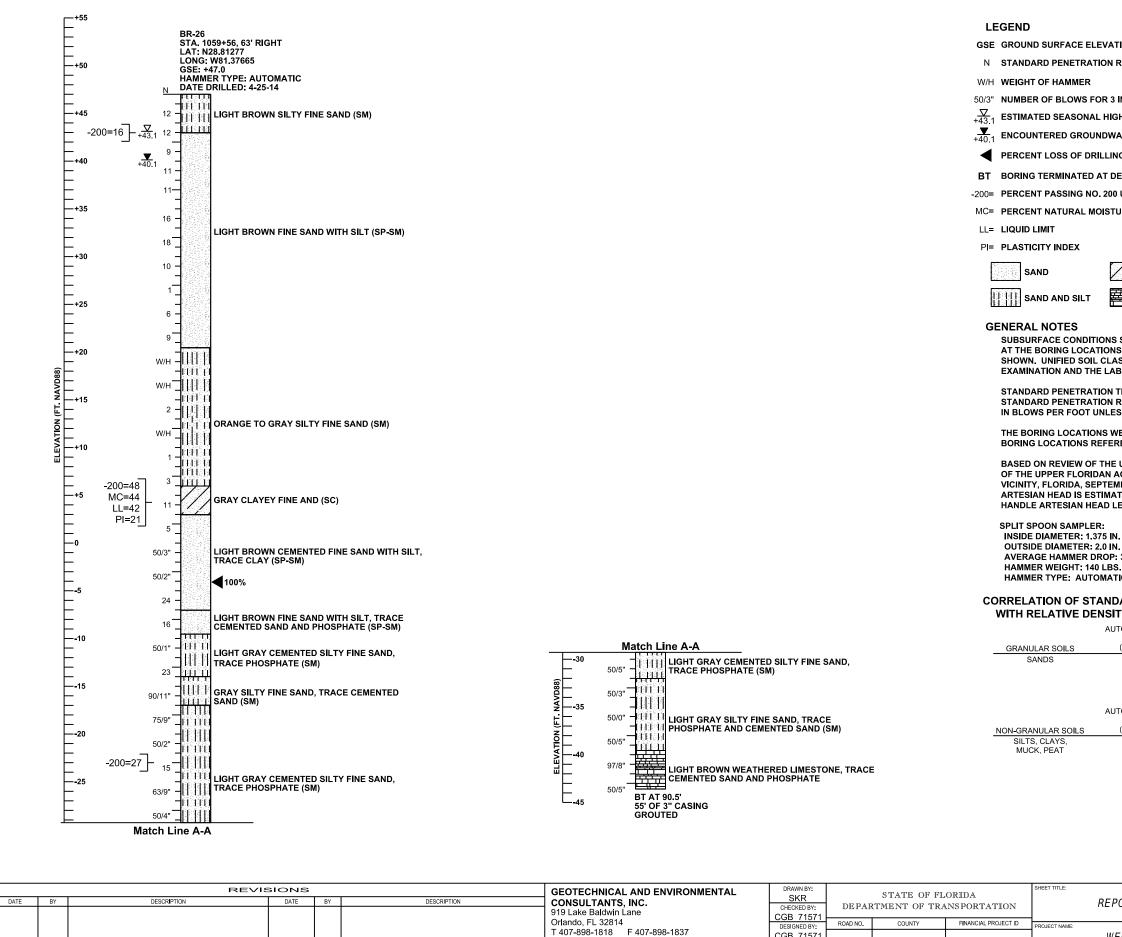
BASED ON REVIEW OF THE U.S. GEOLOGICAL SURVEY MAP ENTITLED "POTENTIOMETRIC SURFACE OF THE UPPER FLORIDAN AQUIFER IN ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND VICINITY, FLORIDA, SEPTEMBER 2008" FOR THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE ARTESIAN HEAD IS ESTIMATED TO BE +22 FT. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO HANDLE ARTESIAN HEAD LEVELS UP TO +22 FT. NAVD88.

SPLIT SPOON SAMPLER: **INSIDE DIAMETER: 1.375 II OUTSIDE DIAMETER: 2.0 II** AVERAGE HAMMER DROP HAMMER WEIGHT: 140 LB HAMMER TYPE: AUTOMA

CORRELATION OF STANDARD PENETRATION RESISTANCE WITH RELATIVE DENSITY AND CONSISTENCY OF SOIL

AUTOMATIC HAMMER N VALUE (blows per foot) RELATIVE DENSITY GRANULAR SOILS VERY LOOSE SANDS 0-3 3-8 8-24 LOOSE MEDIUM DENSE 24-40 DENSE VERY DENSE OVER 40 AUTOMATIC HAMMER N VALUE NON-GRANULAR SOILS (blows per foot) CONSISTENCY SILTS, CLAYS, 0-1 VERY SOFT MUCK, PEAT 1-3 SOFT FIRM 3-6 SECTION: 25 6-12 STIFF 12-24 VERY STIFF TOWNSHIP: 19 SOUTH OVER 24 HARD RANGE: 29 EAST Bridge Nos. 770105 & 770106

		RI	EVISIONS			GEOTECHNICAL AND ENVIRONMENTAL	DRAWN BY:		STATE OF F	LORIDA	SHEET TITLE:			REF. DWG. NO.
DATE	BY	DESCRIPTION	DATE	BY	DESCRIPTION	CONSULTANTS, INC. 919 Lake Baldwin Lane	CHECKED BY: CGB 71571	DEPA		ANSPORTATION		REPORT OF S	PT BORINGS FOR STRUCTURES	
						Orlando, FL 32814 T 407-898-1818 F 407-898-1837	DESIGNED BY: CGB 71571	ROAD NO.	COUNTY	FINANCIAL PROJECT ID	PROJECT NAME:	WEKIVA PAR	RKWAY (SR 429) SECTION 7A	SHEET NO.
						Certificate of Authorization No. 5882 DANIEL C. STANFILL PE NO. 42763	CHECKED BY: DCS 42763	429	SEMINOLE	240200 - 2 - 52 - 01			GLADE VIEW DRIVE	B5 - 7
						•			scott	•	5/12/20	015 1:44:12 PM	J:\D109\3520G Wekiva Parkway Section 7A\b1boring08.dgn	


GSE GROUND SURFACE ELEVATION (FT. NAVD88) N STANDARD PENETRATION RESISTANCE, BLOWS PER FOOT

▼ +41.0 ENCOUNTERED GROUNDWATER ELEVATION (FT. NAVD88) 24 HRS. AFTER DATE DRILLED

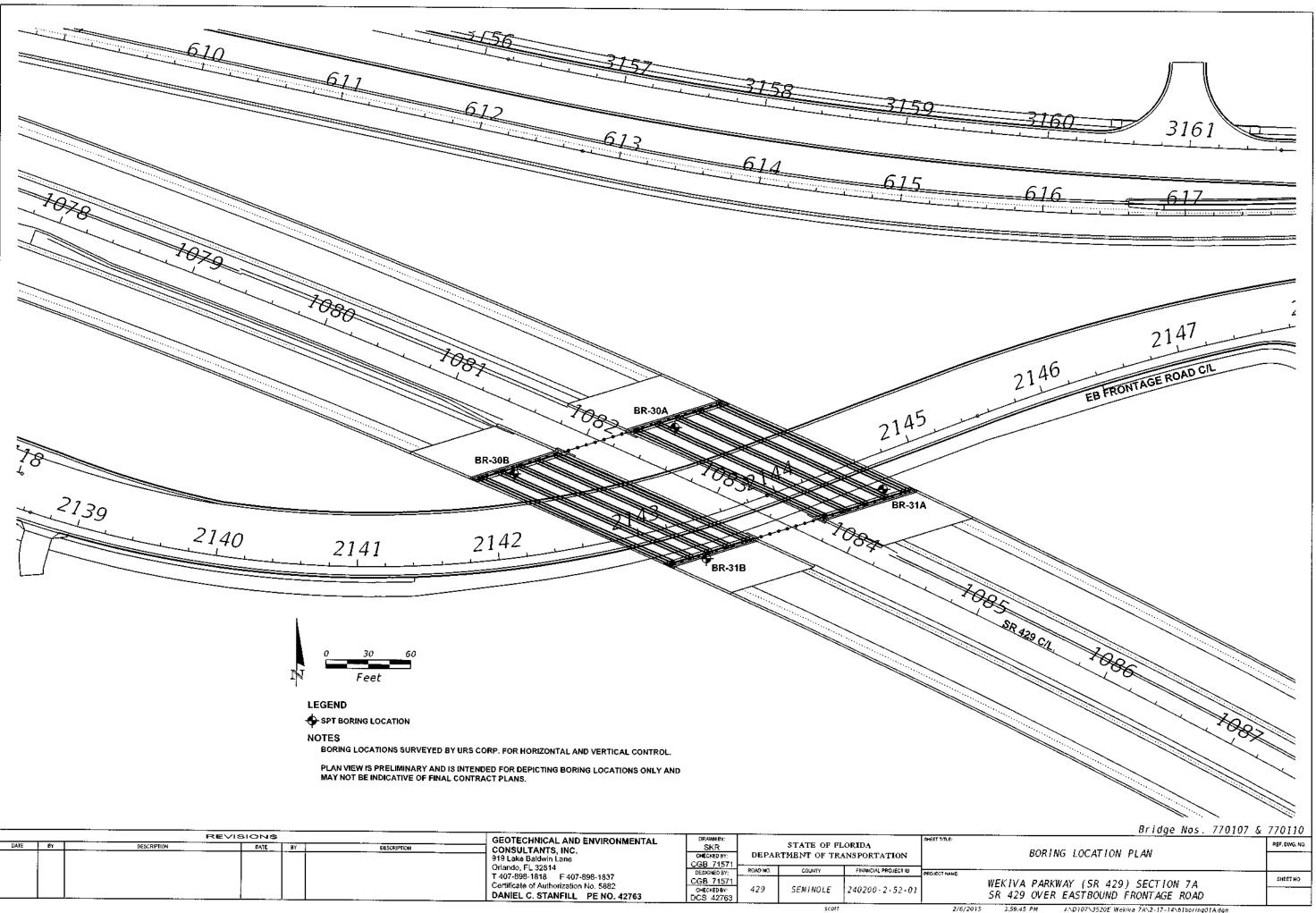
LIMESTONE

	ENVIRONMENTAL CLASSIFICATION:
IN.	SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE
IN.	SUBSTRUCTURE:
P: 30 IN.	STEEL: EXTREMELY AGGRESSIVE (pH=5.3)
BS.	CONCRETE: MODERATELY AGGRESSIVE (pH=5.3)
ATIC	· · · ·

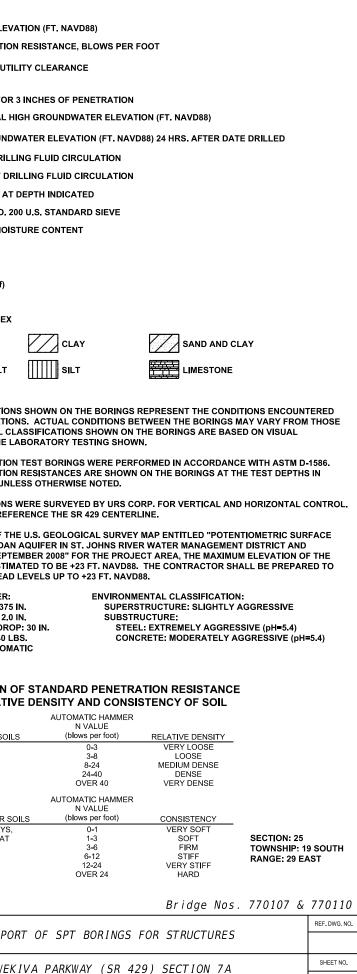
DANIEL C. STANFILL PE NO. 42763

CGB 71571

VATION (FT. NAVD88) ON RESISTANCE, BLO					
R 3 INCHES OF PENET	TRATION				
HIGH GROUNDWATEI	R ELEVATION (FT. N	IAVD88)			
DWATER ELEVATION	(FT. NAVD88) 24 HF	RS. AFTER D	ATE DRI	LLED	
LING FLUID CIRCULA	TION				
T DEPTH INDICATED					
200 U.S. STANDARD S	SIEVE				
ISTURE CONTENT					
ONS SHOWN ON THE E ONS. ACTUAL COND CLASSIFICATIONS SH	ITIONS BETWEEN T OWN ON THE BORI	HE BORING	S MAY V	ARY FROM TH	
ON TEST BORINGS WI ON RESISTANCES AR NLESS OTHERWISE NO	E SHOWN ON THE E				
S WERE SURVEYED E FERENCE THE SR 429		VERTICAL A	ND HOF	RIZONTAL CON	ITROL.
THE U.S. GEOLOGICAI AN AQUIFER IN ST. JO TEMBER 2008'' FOR T IMATED TO BE +22 FT ID LEVELS UP TO +22	HNS RIVER WATER HE PROJECT AREA . NAVD88. THE COI	MANAGEMI	ENT DIS NUM ELE	TRICT AND EVATION OF TI	HE
	NVIRONMENTAL CL			5001/5	
5 IN. 0 IN.	SUPERSTRUCTUR SUBSTRUCTURE:				
OP: 30 IN. LBS. MATIC	STEEL: EXTRE			. ,)
NDARD PENETRA					
AUTOMATIC HAMMER N VALUE					
(blows per foot) 0-3	RELATIVE DENSIT	<u>Y</u>			
3-8 8-24	LOOSE MEDIUM DENSE				
24-40 OVER 40	DENSE VERY DENSE				
AUTOMATIC HAMMER					
N VALUE (blows per foot)	CONSISTENCY				
0-1 1-3	VERY SOFT SOFT				
3-6 6-12	FIRM				
12-24 OVER 24	VERY STIFF HARD				
0121124	HARD				
			том	TION: 25 /NSHIP: 19 SO IGE: 29 EAST	UTH
		Bridge	Noc	770105 5	770106
		Bridge	1005.	770105 &	REF. DWG. NC
REPORT OF SPT	BORINGS FOR	STRUCTL	IRES		
WEKIVA PARKWA	AY (SR 429)	SECTION	7 <i>A</i>		SHEET NO.

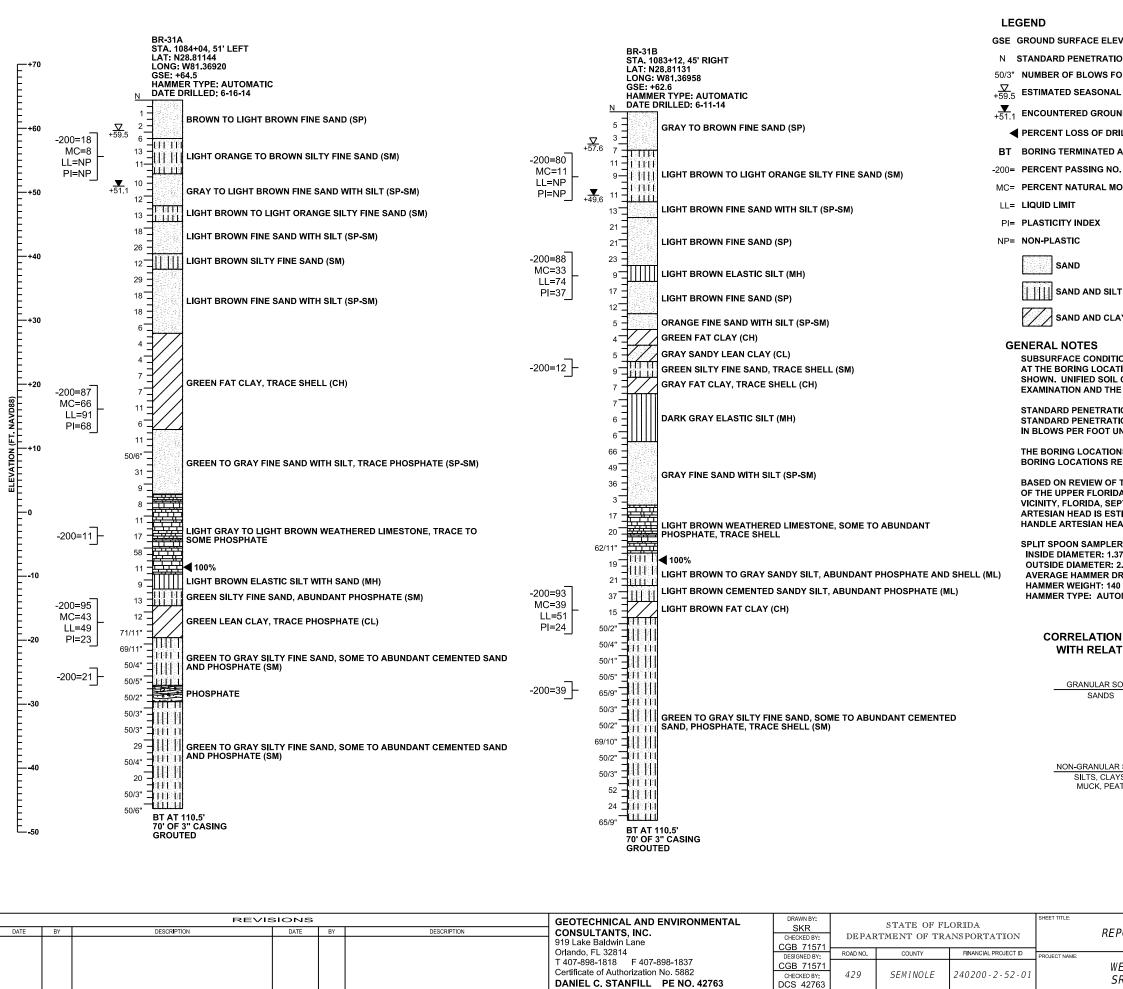

5/12/2015 1:43:50 PM J:\D109\3520G Wekiva Parkway Section 7A\b1boring08.dgn

B5-8


AT GLADE VIEW DRIVE

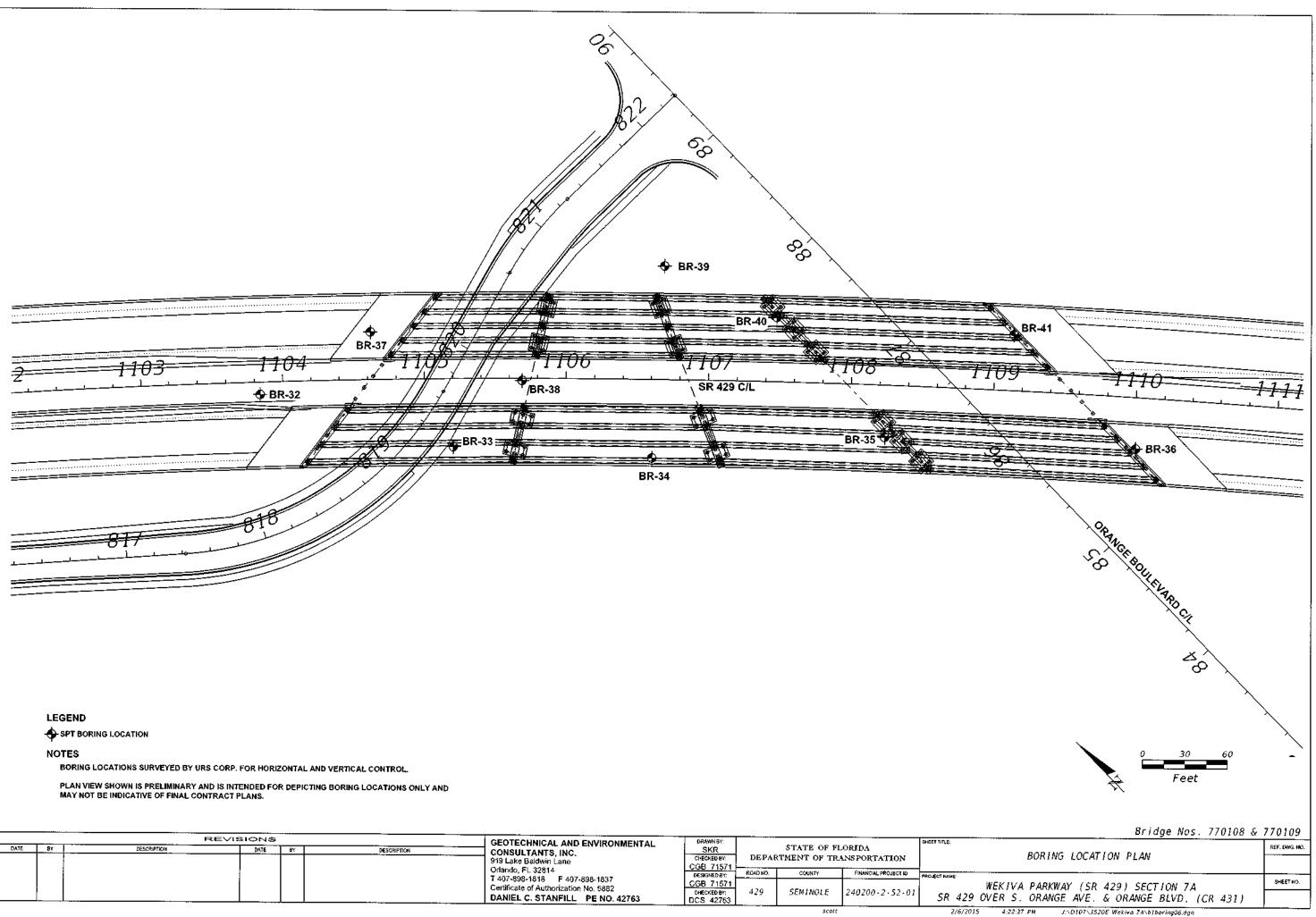
BORING LOCATION PLAN AND REPORT OF SPT BORINGS

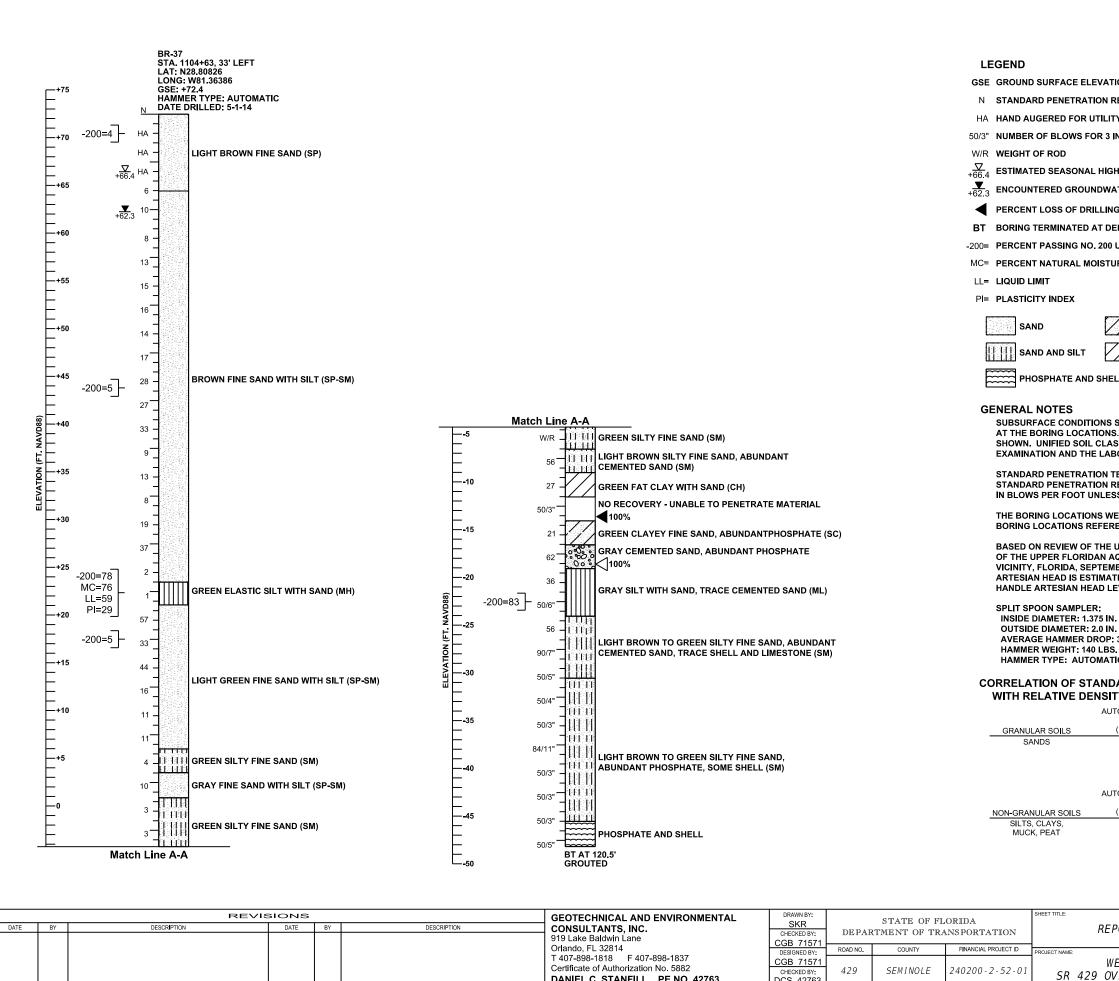
SR 429 OVER EASTBOUND FRONTAGE ROAD



F ⁺⁷⁰		BR-30A STA. 1082+55, 30' LEFT	LAT: N	081+64, 45' RIGHT I28.81146	LEGEND GSE GROUND SURFACE ELEVATION (FT. NAVD88)
		LAT: N28.81156 LONG: W81.36965 GSE: +61.7 HAMMER TYPE: AUTOMATIC DATE DRILLED: 6-13-14	LONG: GSE: + HAMM	W28.81146	N STANDARD PENETRATION RESISTANCE, BLOWS PER FOOT HA HAND AUGERED FOR UTILITY CLEARANCE W/R WEIGHT OF ROD
+60	-200=3]- 2 +56.7 12	BROWN TO LIGHT BROWN FINE SAND (SP)	HA - HA - +56.2 HA - *56.2 HA -	BROWN TO LIGHT BROWN FINE SAND (SP)	50/3" NUMBER OF BLOWS FOR 3 INCHES OF PENETRATION $\frac{\nabla}{+56.7}$ ESTIMATED SEASONAL HIGH GROUNDWATER ELEVATION (FT. NAVD88)
+50	-200=10 - y 9- +50.4 11 -		8 - 111 11 8 - 111 11 8 - 111 11 8 - 111 11	LIGHT ORANGE TO LIGHT BROWN SILTY FINE SAND (SM)	+50.4 ENCOUNTERED GROUNDWATER ELEVATION (FT. NAVD88) 24 HRS. AFTER DATE D ◀ PERCENT LOSS OF DRILLING FLUID CIRCULATION < PERCENT RETURN OF DRILLING FLUID CIRCULATION
	10 17 22		13 12 -200=5 ▼ , -	LIGHT BROWN FINE SAND (SP)	BT BORING TERMINATED AT DEPTH INDICATED -200= PERCENT PASSING NO. 200 U.S. STANDARD SIEVE
	34 - 6 - 33 -		+ <u>39</u> ,7 15 <u>-</u> 17 <u>-</u> 18 <u>-</u>	LIGHT ORANGE TO LIGHT BROWN FINE SAND WITH SILT (SP-SM)	MC= PERCENT NATURAL MOISTURE CONTENT LL= LIQUID LIMIT PI= PLASTICITY INDEX
+30	34 8 W/P	LIGHT BROWN FINE SAND (SP) ORANGE TO BROWN FINE SAND WITH SILT (SP-SM) 111 111 111 111 GREEN SANDY SILT (ML)	-200=56 18 MC=66 12 LL=56 11 PI=31 17		\dot{d} d= DRY UNIT WEIGHT (pcf) C _C = COMPRESSION INDEX
+20		11111 111111 GREEN SILTY FINE SAND, TRACE SHELL (SM)	$d_{d=58}$ $C_{C}=0.37$ $C_{R}=0.06$ $d_{d=58}$	DARK GRAY SANDY FAT CLAY, TRACE SHELL (CH) UNDISTURBED SAMPLE (SHELBY TUBE) - 100% RECOVERY DARK GRAY SANDY ELASTIC SILT, TRACE SHELL (MH)	C _R = RECOMPRESSION INDEX
88)	6 6 7 3	GRAY FAT CLAY, TRACE SHELL (CH) GRAY ELASTIC SILT, TRACE TO SOME SHELL (MH)	-200=93 MC=111 LL=77 PI=37 6	GRAY ELASTIC SILT (MH)	GENERAL NOTES SUBSURFACE CONDITIONS SHOWN ON THE BORINGS REPRESENT THE CONDITIO
	-200=6	GRAY FINE SAND WITH SILT, TRACE PHOSPHATE (SP-SM)	54 - 39 - 19 -	GRAY TO ORANGE FINE SAND WITH SILT (SP-SM)	AT THE BORING LOCATIONS. ACTUAL CONDITIONS BETWEEN THE BORINGS MAY SHOWN. UNIFIED SOIL CLASSIFICATIONS SHOWN ON THE BORINGS ARE BASED (EXAMINATION AND THE LABORATORY TESTING SHOWN. STANDARD PENETRATION TEST BORINGS WERE PERFORMED IN ACCORDANCE W
	2 	GRAY SILTY FINE SAND (SM)	7] 4] 19]	I I ORANGE TO GRAY SILTY FINE SAND (SM) I GRAY FINE SAND WITH SILT (SP-SM)	STANDARD PENETRATION RESISTANCES ARE SHOWN ON THE BORINGS AT THE T IN BLOWS PER FOOT UNLESS OTHERWISE NOTED. THE BORING LOCATIONS WERE SURVEYED BY URS CORP. FOR VERTICAL AND HO
	-200=7 -200=7 -50/4" -200=7 -200=7	GRAY SILTY FINE SAND, SOME PHOSPHATE, TRACE SHELL (SM) GRAY FINE SAND WITH SILT, ABUNDANT PHOSPHATE, TRACE SHELL (SP-S	-200=17	I ■ 100%	BORING LOCATIONS REFERENCE THE SR 429 CENTERLINE. BASED ON REVIEW OF THE U.S. GEOLOGICAL SURVEY MAP ENTITLED "POTENTIO OF THE UPPER FLORIDAN AQUIFER IN ST. JOHNS RIVER WATER MANAGEMENT DI VICINITY, FLORIDA, SEPTEMBER 2008" FOR THE PROJECT AREA, THE MAXIMUM E ARTESIAN HEAD IS ESTIMATED TO BE +23 FT. NAVD88. THE CONTRACTOR SHALL HANDLE ARTESIAN HEAD LEVELS UP TO +23 FT. NAVD88.
	50/3"	11 111 11 1111 11 111 11 1111 11 111 11 1111 11 1111 11 1111 11 111111 11 1111 11 1111 11 1111 11	17 - 1 50/6" - 1 50/3" - 1 27 - 1 50/2" - 1 50/2" - 1	LIGHT GREEN TO GRAY SILTY FINE SAND, SOME TO ABUNDANT PHOSPHATE, CEMENTED SAND AND SHELL (SM)	SPLIT SPOON SAMPLER:ENVIRONMENTAL CLASSIFICATION:INSIDE DIAMETER: 1.375 IN.SUPERSTRUCTURE: SLIGHTLY AGGOUTSIDE DIAMETER: 2.0 IN.SUBSTRUCTURE:AVERAGE HAMMER DROP: 30 IN.STEEL: EXTREMELY AGGRESSIVHAMMER WEIGHT: 140 LBS.CONCRETE: MODERATELY AGGFHAMMER TYPE: AUTOMATICCONCRETE: MODERATELY AGGF
	81/9" - 50/4" _ 42 - 50/5" _	II III II III II III II III GRAY SILTY FINE SAND, SOME TO ABUNDANT PHOSPHATE AND II III CEMENTED SAND, TRACE SHELL (SM)	50/5" - 38 - 50/5" -		CORRELATION OF STANDARD PENETRATION RESISTANCE WITH RELATIVE DENSITY AND CONSISTENCY OF SOIL AUTOMATIC HAMMER N VALUE
-40	50/1" 61		$-200=11 - \begin{array}{c} 47 & -1111 \\ 50/2" & -1111 \\ 64 & -1 \\ 25 & -1111 \\ 64 & -1 \\ 25 & -1111 \\ 1111 \\ -25 & -1111 \\ 1111 \\ -25 & -1111 \\ 1111 \\ -25 & -1111 \\ 1111 \\ -25 & -1111 \\ 1111 \\ -25 & -1111 \\ 1111 \\ -25 & -11111 \\ -25 & -11111 \\ -25 & -11111 \\ -25 & -11111 \\ -25 & -11111 \\ -25 & -11111 \\ -25 & -11111 \\ -25 & -11111 \\ -25 & -11111 \\ -25 & -11111 \\ -25 & -11111 \\ -25 & -11111 \\ -25 & -11111 \\ -25 & -11111 \\ -25 & -11111 \\ -25 & -11111 \\ -25 & $		GRANULAR SOILS (blows per foot) RELATIVE DENSITY SANDS 0-3 VERY LOOSE 3-8 LOOSE 8-24 MEDIUM DENSE 24-40 DENSE OVER 40 VERY DENSE
-50	-200=29	11 1 0 0 13 0 1 14 0 0 1 1 0 1 0	50/5" - [11] 11 53 - [11] 14 53 - [11] 14 50/5" - [11] 14 50/5" - BT AT		AUTOMATIC HAMMER N VALUE NON-GRANULAR SOILS (blows per foot) CONSISTENCY SILTS, CLAYS, 0-1 VERY SOFT
E60		BT AT 115.5' 70' OF 3" CASING GROUTED		3" CASING	MUCK, PEAT 1-3 SOFT S 3-6 FIRM T 6-12 STIFF F 12-24 VERY STIFF OVER 24 HARD
		REVISIONS	GEOTECHNICAL AI	ND ENVIRONMENTAL DRAWN BY: SKIP STATE OF FLORID	Bridge Nos. 7
DATE BY	DES	CRIPTION DATE BY DESCRIPTION	CONSULTANTS, IN 919 Lake Baldwin Lane Orlando, FL 32814 T 407-898-1818 F 4 Certificate of Authoriza	C. CHECKED BY: DE PARTMENT OF TRANSPO CHECKED BY: DE PARTMENT OF TRANSPO CGB 71571 DESIGNED BY: ROAD NO. COUNTY FIN. CGB 71571	DEFETATION REPORT OF SPT BORINGS FOR STRUCTURES ANCIAL PROJECT ID PROJECT NAME: WEK IVA PARKWAY (SR 429) SECTION 7A
			DANIEL C. STANFIL	CHECKED BT: 1 723 JUNINOLL 2702	SR 429 OVER EASTBOUND FRONTAGE ROAD 5/12/2015 1:38:13 PM J:\D109\\3520G Wekiva Parkway Section 7A\\b1bo

1:38:13 PM J:\D109\3520G Wekiva Parkway Section 7A\b1boring12.dgn

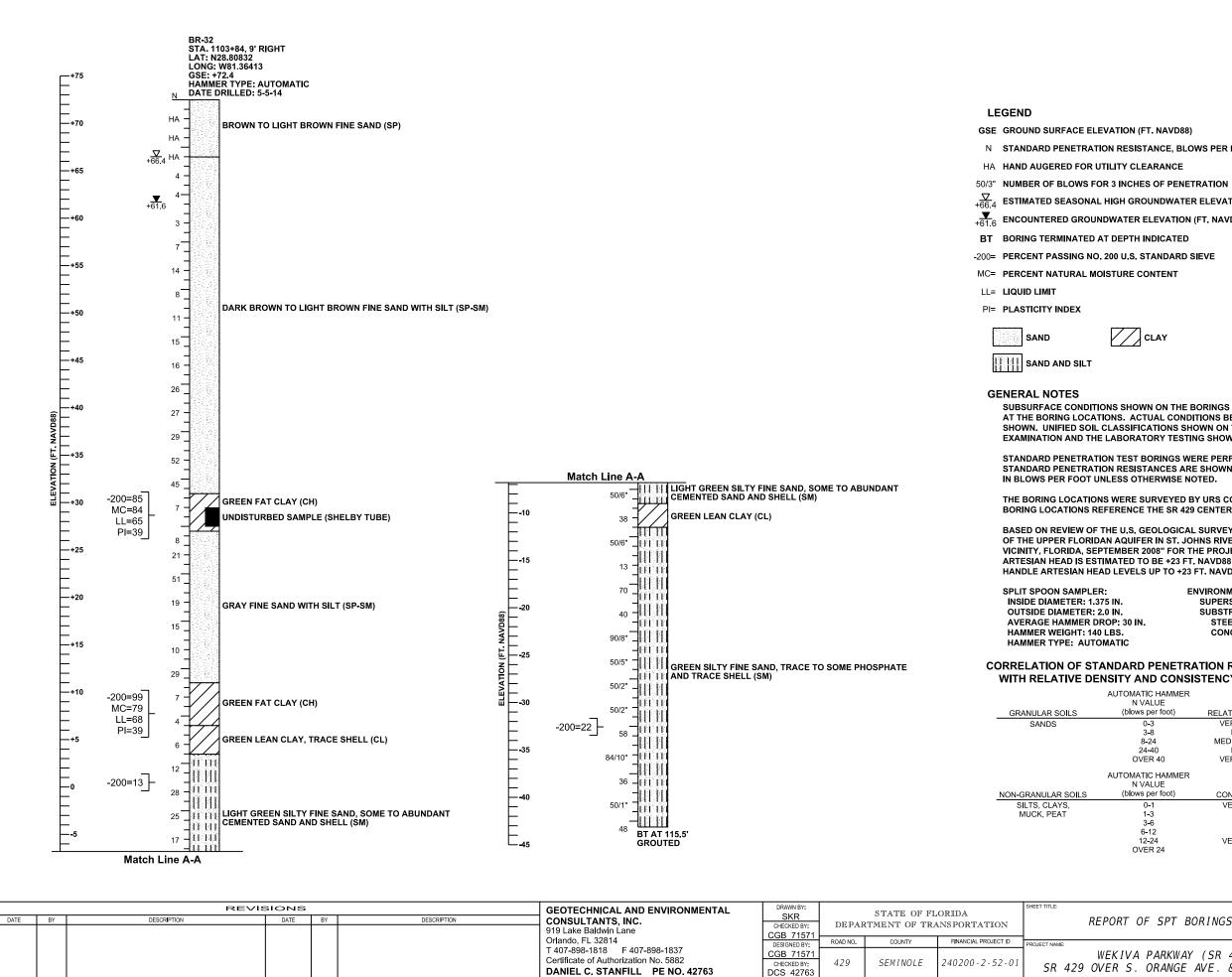

B6 - 4



_EVATION (F	T. NAVD88)			
TION RESIST	ANCE, BLOWS PER FO	от		
FOR 3 INCHE	ES OF PENETRATION			
AL HIGH GR	OUNDWATER ELEVAT	ON (FT. NAVD88)		
UNDWATER	ELEVATION (FT. NAVD	88) 24 HRS. AFTER DATE	DRILLED	
RILLING FLU	JID CIRCULATION			
D AT DEPTH	INDICATED			
10. 200 U.S. S	STANDARD SIEVE			
MOISTURE C	ONTENT			
	CLAY			
ι∟т ∏∏	SILT	PHOSPHATE		
ш				
LAY				
ATIONS. AC	TUAL CONDITIONS BE	REPRESENT THE CONDIT TWEEN THE BORINGS M HE BORINGS ARE BASE N.	AY VARY FROM	
ATION RESIS		ORMED IN ACCORDANCE ON THE BORINGS AT TH		
	SURVEYED BY URS CO THE SR 429 CENTERL	RP. FOR VERTICAL AND INE.	HORIZONTAL C	CONTROL.
IDAN AQUIFI EPTEMBER STIMATED T	ER IN ST. JOHNS RIVE 2008'' FOR THE PROJE	MAP ENTITLED "POTEN R WATER MANAGEMENT CT AREA, THE MAXIMUM THE CONTRACTOR SHA 38.	DISTRICT AND	F THE
.ER: I.375 IN. I: 2.0 IN. DROP: 30 IN 40 LBS. TOMATIC	SUPERS SUBSTR STEEL	ENTAL CLASSIFICATION: TRUCTURE: SLIGHTLY A UCTURE: .: EXTREMELY AGGRES: RETE: MODERATELY AG	GGRESSIVE SIVE (pH=5.4)	=5.4)
	ANDARD PENETRA NSITY AND CONSIS AUTOMATIC HAMMER N VALUE	TION RESISTANCE STENCY OF SOIL		
SOILS	(blows per foot)	RELATIVE DENSITY		
S	0-3 3-8	VERY LOOSE LOOSE		
	8-24 24-40	MEDIUM DENSE DENSE		
	OVER 40 AUTOMATIC HAMMER	VERY DENSE		
	N VALUE			
AR SOILS .AYS,	(blows per foot) 0-1	CONSISTENCY VERY SOFT		
EAT	1-3 3-6	SOFT FIRM		
	6-12 12-24	STIFF VERY STIFF		
	OVER 24	HARD		
			SECTION: 25 TOWNSHIP: 1 RANGE: 29 E/	
		Bridge Nos.	770107 &	
EPORT OF	SPT BORINGS	FOR STRUCTURES		REF. DWG. NO.
WEKIVA	PARKWAY (SR 42	9) SECTION 71		SHEET NO.
		FRONTAGE ROAD		B6 - 5

BORING LOCATION PLAN AND REPORT OF SPT BORINGS

SR 429 OVER ORANGE AVENUE & ORANGE BOULEVARD

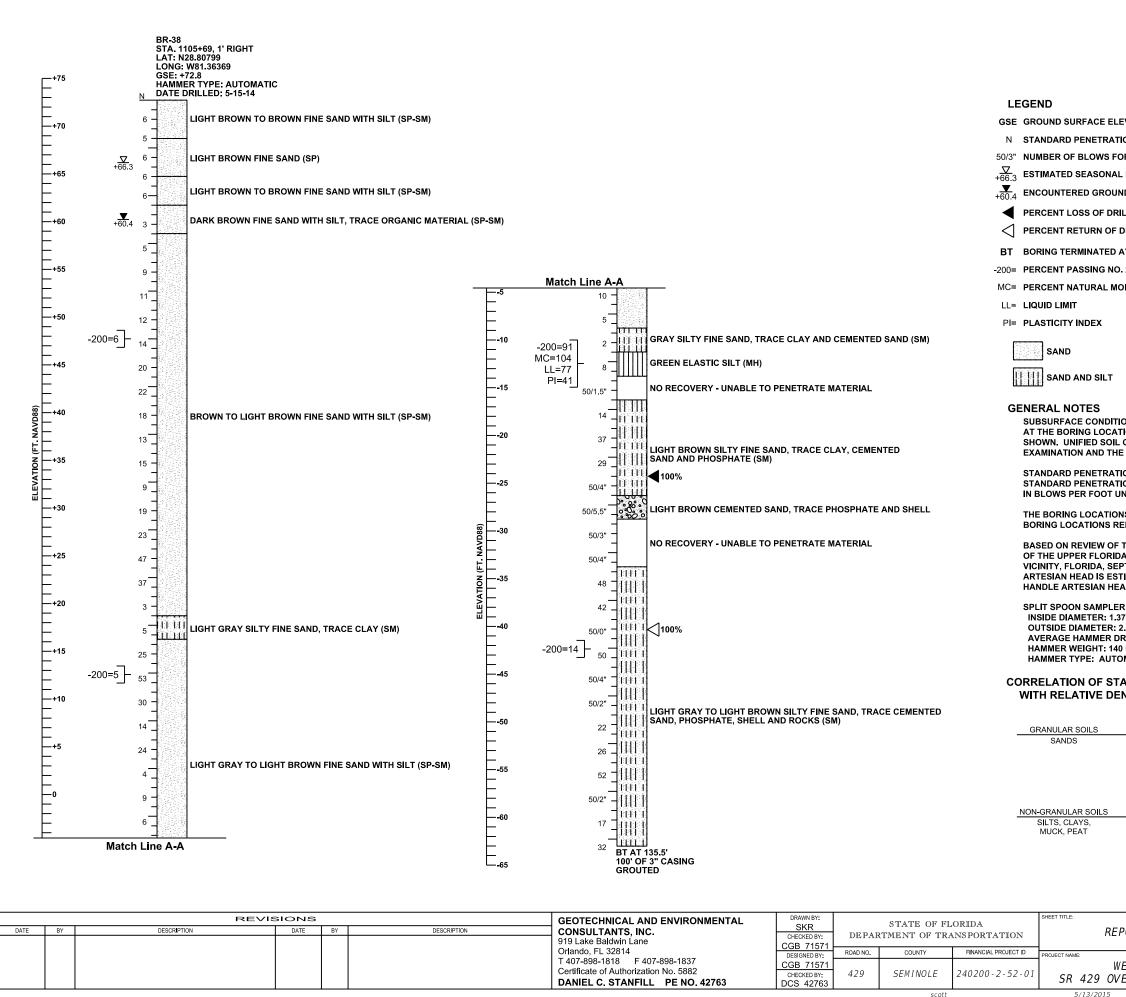

DANIEL C. STANFILL PE NO. 42763

DCS 42763

ION (FT. NAVD88)				
ESISTANCE, BLO	WS PER FOOT			
Y CLEARANCE				
NCHES OF PENET	RATION			
	ELEVATION (FT. N			
	•	,		
TER ELEVATION (FT. NAVD88) 24 HR	5. AFTER DATE DRIL	LED	
G FLUID CIRCULA	TION			
PTH INDICATED				
U.S. STANDARD S	IEVE			
IRE CONTENT				
INE CONTENT				
		MENTED SAND		
		VENTED SAND		
CLAY	IIIII sı∟	т		
LL				
		IT THE CONDITIONS		
		IGS ARE BASED ON		02
ORATORY TESTIN	IG SHOWN.			
EST BORINGS WE	RE PERFORMED IN	ACCORDANCE WITH	HASTM D-1586	
ESISTANCES ARE		ORINGS AT THE TES	T DEPTHS IN	
S OTHERWISE NO				
ERE SURVEYED B ENCE THE SR 429		ERTICAL AND HORI	ZONTAL CONT	ROL.
		TLED "POTENTIOME MANAGEMENT DIST		
BER 2008" FOR TH	IE PROJECT AREA,	THE MAXIMUM ELEV	ATION OF THE	
ED TO BE +23 FT. EVELS UP TO +23 I		TRACTOR SHALL BE	E PREPARED T	D
E	NVIRONMENTAL CLA	ASSIFICATION: E: SLIGHTLY AGGRE	SSIVE	
	SUBSTRUCTURE:			
30 IN.		_Y AGGRESSIVE (pH GHTLY AGGRESSIVI		
ic	CONORETE. CE		L (pri=7.4)	
		105		
	TION RESISTAN			
	STENOT OF OOI	F		
N VALUE				
(blows per foot) 0-3	RELATIVE DENSIT	<u>Y</u>		
3-8 8 - 24	LOOSE MEDIUM DENSE			
24-40	DENSE			
OVER 40	VERY DENSE			
OMATIC HAMMER				
(blows per foot)	CONSISTENCY			
0-1 1-3	VERY SOFT SOFT			
3-6 6-12	FIRM STIFF	SECTION: 25		
12-24	VERY STIFF	TOWNSHIP: 1 RANGE: 29 E		
OVER 24	HARD			
		Bridge Nec	770100 0	770100
		Bridge Nos.	//UIU8 &	
ORT OF CDT	BORINGS FOR	STRUCTUPES		REF. DWG. NO.
ONI DI SEI	JUNINUJ IUK	JINUCIUNLJ		
	AV (CD 420)			SHEET NO.
	AY (SR 429) SE AVE & SR	431 (ORANGE		B7 - 6
LN J. UNANC	JE AVE, & JA	TJI (UNANGE	$D \cup V \cup D \cup J$	U/ - U

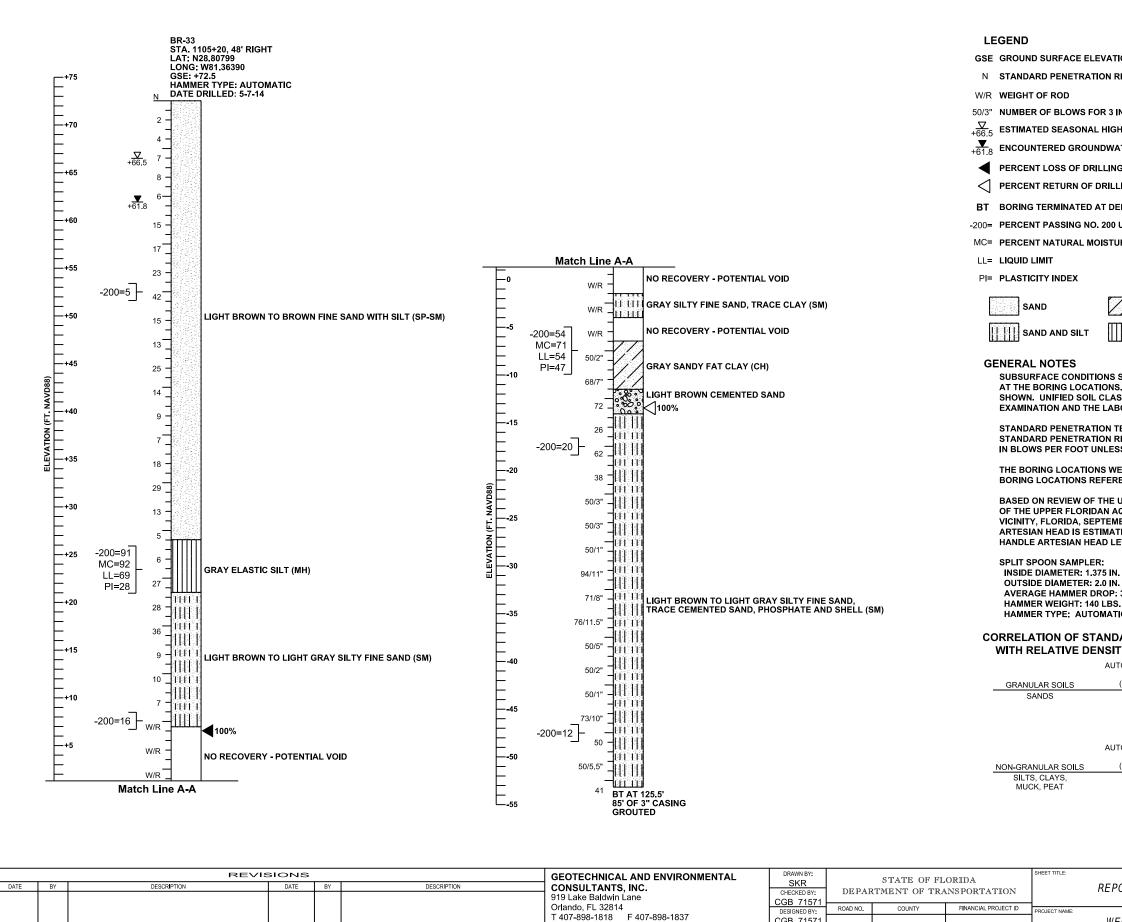
^{5/13/2015 2:34:32} PM

J:\D109\3520G Wekiva Parkway Section 7A\b1boring09.dgn


N STANDARD PENETRATION RESISTANCE, BLOWS PER FOOT $\frac{\nabla}{+664}$ ESTIMATED SEASONAL HIGH GROUNDWATER ELEVATION (FT. NAVD88) ENCOUNTERED GROUNDWATER ELEVATION (FT. NAVD88) 24 HRS. AFTER DATE DRILLED CLAY SUBSURFACE CONDITIONS SHOWN ON THE BORINGS REPRESENT THE CONDITIONS ENCOUNTERED AT THE BORING LOCATIONS. ACTUAL CONDITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE SHOWN. UNIFIED SOIL CLASSIFICATIONS SHOWN ON THE BORINGS ARE BASED ON VISUAL EXAMINATION AND THE LABORATORY TESTING SHOWN. STANDARD PENETRATION TEST BORINGS WERE PERFORMED IN ACCORDANCE WITH ASTM D-1586. STANDARD PENETRATION RESISTANCES ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN IN BLOWS PER FOOT UNLESS OTHERWISE NOTED. THE BORING LOCATIONS WERE SURVEYED BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL. BORING LOCATIONS REFERENCE THE SR 429 CENTERLINE.

BASED ON REVIEW OF THE U.S. GEOLOGICAL SURVEY MAP ENTITLED "POTENTIOMETRIC SURFACE OF THE UPPER FLORIDAN AQUIFER IN ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND VICINITY, FLORIDA, SEPTEMBER 2008" FOR THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE ARTESIAN HEAD IS ESTIMATED TO BE +23 FT. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO HANDLE ARTESIAN HEAD LEVELS UP TO +23 FT. NAVD88.

R:	ENVIRONMENTAL CLASSIFICATION:
75 IN.	SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE
.0 IN.	SUBSTRUCTURE:
ROP: 30 IN.	STEEL: SLIGHTLY AGGRESSIVE (pH=7.4)
LBS.	CONCRETE: SLIGHTLY AGGRESSIVE (pH=7.4)
MATIC	u /


CORRELATION OF STANDARD PENETRATION RESISTANCE WITH RELATIVE DENSITY AND CONSISTENCY OF SOIL

LAR SOILS	AUTOMATIC HAMMER N VALUE (blows per foot)	RELATIVE DENSITY		
ANDS	0-3 3-8 8-24 24-40 OVER 40	VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE		
NULAR SOILS	AUTOMATIC HAMMER N VALUE (blows per foot)	CONSISTENCY		
S, CLAYS, K, PEAT	0-1 1-3 3-6 6-12 12-24 OVER 24	VERY SOFT SOFT FIRM STIFF VERY STIFF HARD	SECTION: 25 TOWNSHIP: 19 SOUTH RANGE: 29 EAST	
		Brid	lge Nos. 770108 &	770109
ET TITLE:				REF. DWG. NO.
	REPORT OF SPT BO	RINGS FOR SIRU	ICTURES	
JECT NAME:	WEKIVA PARKWAY	(SR 429) SECT	ION 7A	SHEET NO.
SR 429	OVER S. ORANGE	· /		B7 - 7

D SURFACE ELEVATION (FT. NAVI)88)	
ARD PENETRATION RESISTANCE,	BLOWS PER FOOT	
R OF BLOWS FOR 3 INCHES OF PE	NETRATION	
TED SEASONAL HIGH GROUNDW	TER ELEVATION (FT. NAVD88)	
NTERED GROUNDWATER ELEVAT	ION (FT. NAVD88) 24 HRS. AFTER DATE DRILLED	
NT LOSS OF DRILLING FLUID CIRC	ULATION	
NT RETURN OF DRILLING FLUID CI	RCULATION	
G TERMINATED AT DEPTH INDICAT	ED	
NT PASSING NO. 200 U.S. STANDA	RD SIEVE	
NT NATURAL MOISTURE CONTENT		
LIMIT		
CITY INDEX		
00.0		
AND CEMEN	TED SAND	
AND AND SILT		
LNOTES		
RFACE CONDITIONS SHOWN ON T	HE BORINGS REPRESENT THE CONDITIONS ENCOUNT	
	ONDITIONS BETWEEN THE BORINGS MAY VARY FROM S SHOWN ON THE BORINGS ARE BASED ON VISUAL	THOSE
IATION AND THE LABORATORY TE	STING SHOWN.	
	S WERE PERFORMED IN ACCORDANCE WITH ASTM D- ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS E NOTED.	
	ED BY URS CORP. FOR VERTICAL AND HORIZONTAL C	ONTROL.
S LOCATIONS REFERENCE THE SR		
	ICAL SURVEY MAP ENTITLED "POTENTIOMETRIC SUR . JOHNS RIVER WATER MANAGEMENT DISTRICT AND	FACE
	OR THE PROJECT AREA, THE MAXIMUM ELEVATION OF 3 FT. NAVD88. THE CONTRACTOR SHALL BE PREPAR	
E ARTESIAN HEAD LEVELS UP TO		
POON SAMPLER:	ENVIRONMENTAL CLASSIFICATION:	
DIAMETER: 1.375 IN. DE DIAMETER: 2.0 IN.	SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE SUBSTRUCTURE:	
AGE HAMMER DROP: 30 IN. ER WEIGHT: 140 LBS.	STEEL: SLIGHTLY AGGRESSIVE (pH=7.4)	
ER TYPE: AUTOMATIC	CONCRETE: SLIGHTLY AGGRESSIVE (pH=7.4)	
ATION OF STANDARD PENE	TRATION RESISTANCE	
RELATIVE DENSITY AND CO		
AUTOMATIC HAMN N VALUE	1ER	
JLAR SOILS (blows per foot)	RELATIVE DENSITY	
ANDS 0-3 3-8	VERY LOOSE LOOSE	
8-24 24-40	MEDIUM DENSE DENSE	
OVER 40	VERY DENSE	
AUTOMATIC HAMN N VALUE	IER	
NULAR SOILS (blows per foot) S, CLAYS, 0-1	CONSISTENCY VERY SOFT	
CK, PEAT 1-3	SOFT	
3-6 6-12	FIRM SECTION: 25 STIFF TOWNSHIP: 19 SOUTH	
12-24 OVER 24	HARD RANGE: 29 EAST	
	Bridge Nos. 770108 &	770109
		REF. DWG. NO
REPORT OF SPT	BORINGS FOR STRUCTURES	
		SHEET NO.
	AY (SR 429) SECTION 7A E AVE. & SR 431 (ORANGE BLVD.)	B7 - 8
	,	

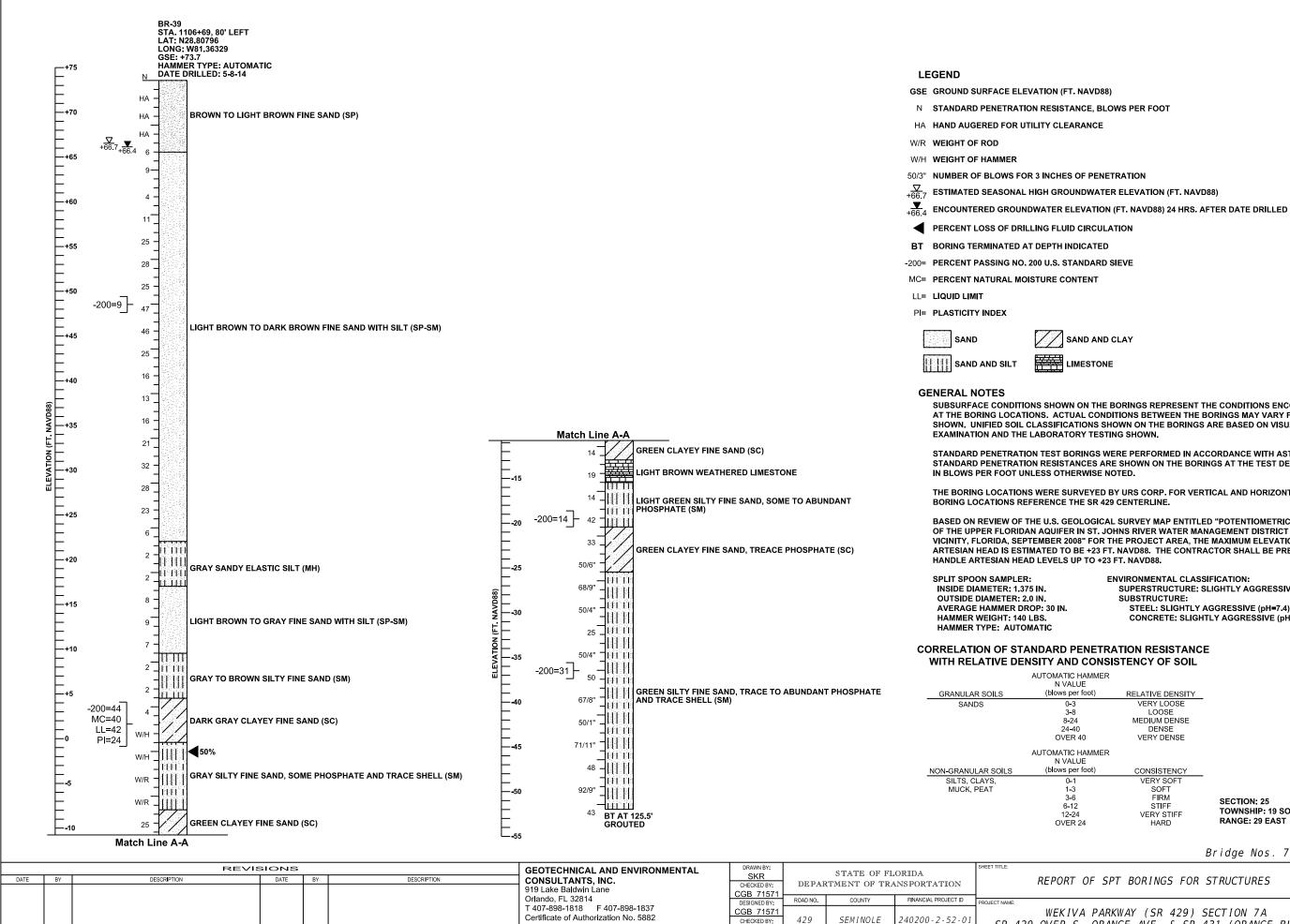
5/13/2015 2:36:32 PM J:\D109\3520G Wekiva Parkway Section 7A\b1boring09.dgn

DANIEL C. STANFILL PE NO. 42763

SEMINOLE 240200 - 2 - 52 - 01 scott

CGB 71571

CHECKED BY


DCS 42763

429

SR 429 OV 5/14/2015

TION (FT. NAVD88)								
RESISTANCE, BLOWS PER FOOT								
INCHES OF PENET	RATION							
GH GROUNDWATER ELEVATION (FT. NAVD88)								
ATER ELEVATION (FT. NAVD88) 24 HRS. AFTER DATE DRILLED								
NG FLUID CIRCULATION								
LING FLUID CIRCULATION								
DEPTH INDICATED								
0 U.S. STANDARD SIEVE								
URE CONTENT								
		EMENTED SAND						
SAND AND C		EMENTED SAND						
SILT								
S SHOWN ON THE B	ORINGS REPRESE	ENT THE CONDITIONS ENCOUNTERI	=D					
		THE BORINGS MAY VARY FROM THE						
		INGS ARE BASED ON VISUAL						
BORATORY TESTIN	NG SHOWN.							
		N ACCORDANCE WITH ASTM D-158	6.					
RESISTANCES ARE		BORINGS AT THE TEST DEPTHS IN						
WERE SURVEYED BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL. RENCE THE SR 429 CENTERLINE.								
KENCE THE SK 425	CENTERLINE.							
		TITLED "POTENTIOMETRIC SURFAC	E					
		R MANAGEMENT DISTRICT AND A. THE MAXIMUM ELEVATION OF TH	F					
ATED TO BE +23 FT.	NAVD88. THE CO	NTRACTOR SHALL BE PREPARED						
LEVELS UP TO +23	FT. NAVD88.							
	NVIRONMENTAL C							
N. N.	SUPERSTRUCTU	RE: SLIGHTLY AGGRESSIVE						
P: 30 IN.		TLY AGGRESSIVE (pH=7 4)						
IS.	CONCRETE: SI	LIGHTLY AGGRESSIVE (pH=7.4)						
TIC								
DARD PENETRA	ATION RESISTA	NCE						
ITY AND CONSI	STENCY OF SO)IL						
JTOMATIC HAMMER								
N VALUE (blows per foot)	RELATIVE DENSI	ТҮ						
0-3	VERY LOOSE	<u></u>						
3-8 8-24	LOOSE MEDIUM DENSE	E						
24-40 OVER 40	DENSE							
OVER 40	VERY DENSE							
UTOMATIC HAMMER N VALUE								
(blows per foot)	CONSISTENCY	<u>, </u>						
0-1 1-3	VERY SOFT SOFT							
3-6	FIRM	SECTION: 25						
6-12 12-24	STIFF VERY STIFF	TOWNSHIP: 19 SOUTH						
OVER 24	HARD	RANGE: 29 EAST						
		Bridge Nos. 770108 &	770109					
			REF. DWG. NO.					
PORT OF SPT	BORINGS FOR	STRUCTURES						
EKIVA PARKW	AY (SR 429)	SECTION 7A	SHEET NO.					
		431 (ORANGE BLVD.)	B7 - 9					
		,						

^{9:27:13} AM

DANIEL C. STANFILL PE NO. 42763

DCS 42763

scott

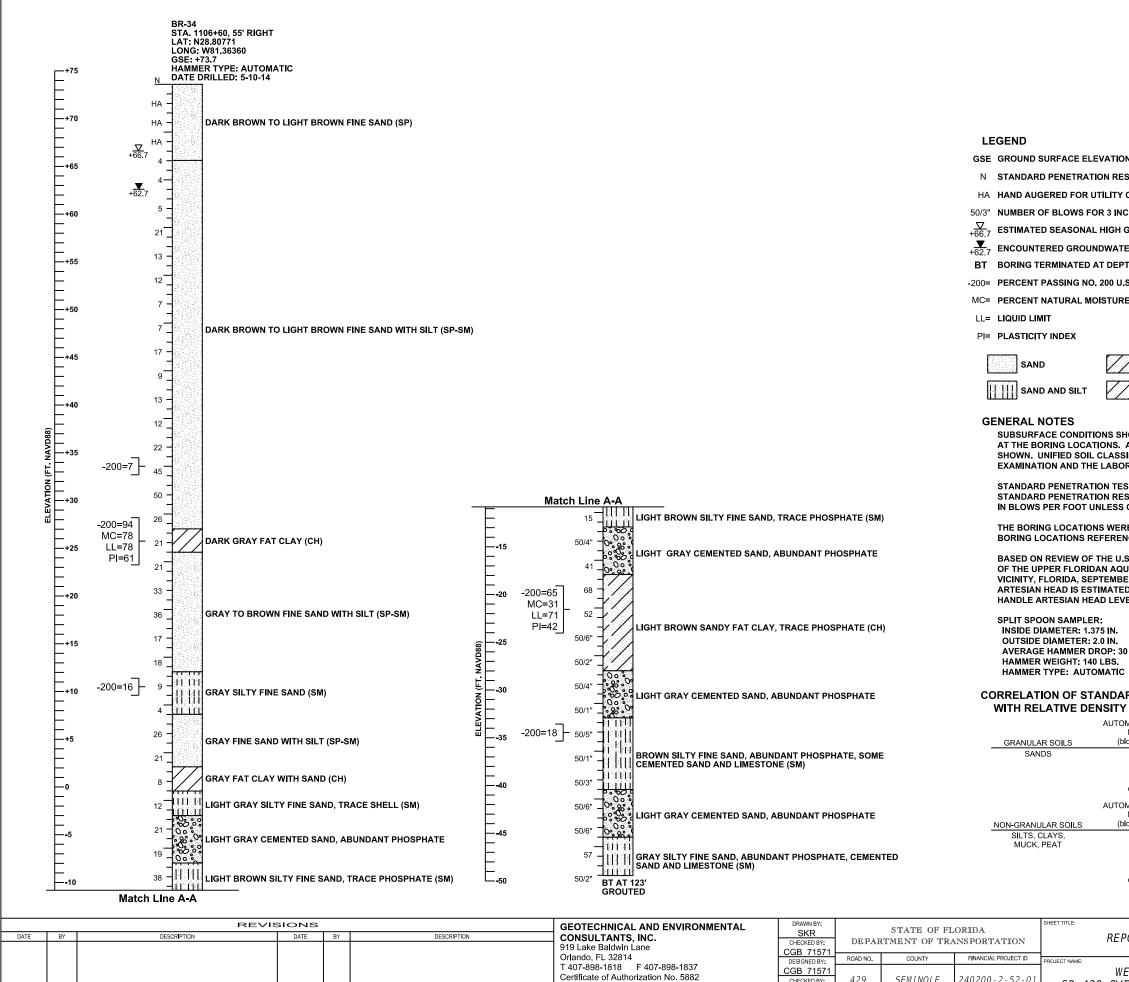
SAND AND CLAY

LIMESTONE

SUBSURFACE CONDITIONS SHOWN ON THE BORINGS REPRESENT THE CONDITIONS ENCOUNTERED AT THE BORING LOCATIONS. ACTUAL CONDITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE SHOWN. UNIFIED SOIL CLASSIFICATIONS SHOWN ON THE BORINGS ARE BASED ON VISUAL

STANDARD PENETRATION TEST BORINGS WERE PERFORMED IN ACCORDANCE WITH ASTM D-1586. STANDARD PENETRATION RESISTANCES ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN

THE BORING LOCATIONS WERE SURVEYED BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL.


BASED ON REVIEW OF THE U.S. GEOLOGICAL SURVEY MAP ENTITLED "POTENTIOMETRIC SURFACE OF THE UPPER FLORIDAN AQUIFER IN ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND VICINITY, FLORIDA, SEPTEMBER 2008" FOR THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE ARTESIAN HEAD IS ESTIMATED TO BE +23 FT. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO

> ENVIRONMENTAL CLASSIFICATION: SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE SUBSTRUCTURE: STEEL: SLIGHTLY AGGRESSIVE (pH=7.4) CONCRETE: SLIGHTLY AGGRESSIVE (pH=7.4)

WITH RELATIVE DENSITY AND CONSISTENCY OF SOIL

OILS	AUTOMATIC HAMMER N VALUE (blows per foot)	RELATIVE DENSITY			
	0-3 3-8 8-24 24-40 OVER 40	VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE	-		
SOILS	AUTOMATIC HAMMER N VALUE (blows per foot)	CONSISTENCY			
/S, .Τ	0-1 1-3 3-6 6-12 12-24 OVER 24	VERY SOFT SOFT FIRM STIFF VERY STIFF HARD	- SECTION: 25 TOWNSHIP: 19 SOUTH RANGE: 29 EAST		
			Bridge Nos. 770108 &	770109	
ET TITLE:				REF. DWG. NO.	
	REPORT OF SPT	BORINGS FOR	STRUCTURES		
NECT NAME: WEKIVA PARKWAY (SR 429) SECTION 7A					
SR 42			431 (ORANGE BLVD.)	B7 - 10	
E (1.2)	2015 2 27 42 844	UND100 35306 Welling	Dealers Casting 745 https://www.casting		

5/13/2015 2:37:42 PM J:\D109\3520G Wekiva Parkway Section 7A\b1boring09.dgn

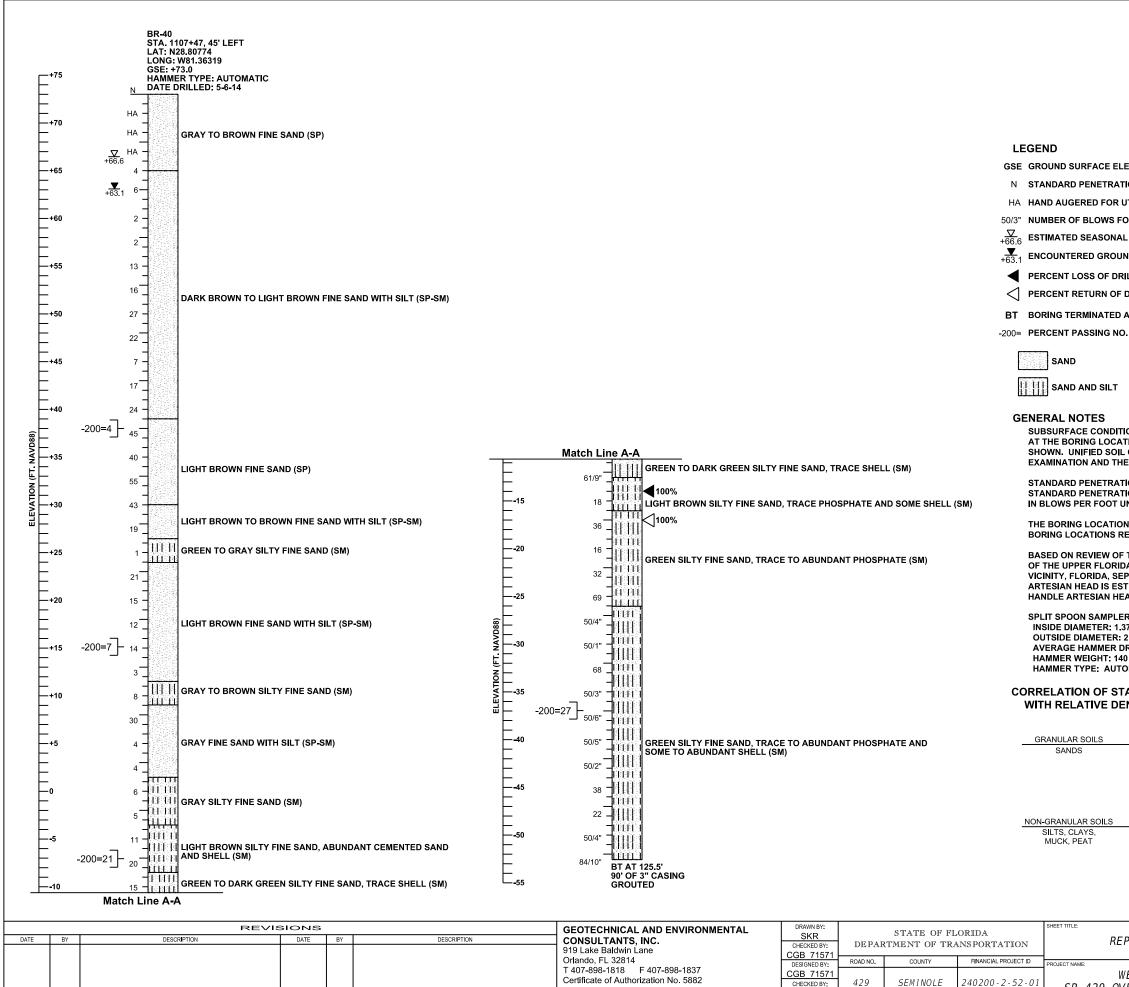
SR 429 OV

240200 - 2 - 52 - 01

429

CHECKED BY

DCS 42763


DANIEL C. STANFILL PE NO. 42763

SEMINOLE

scott

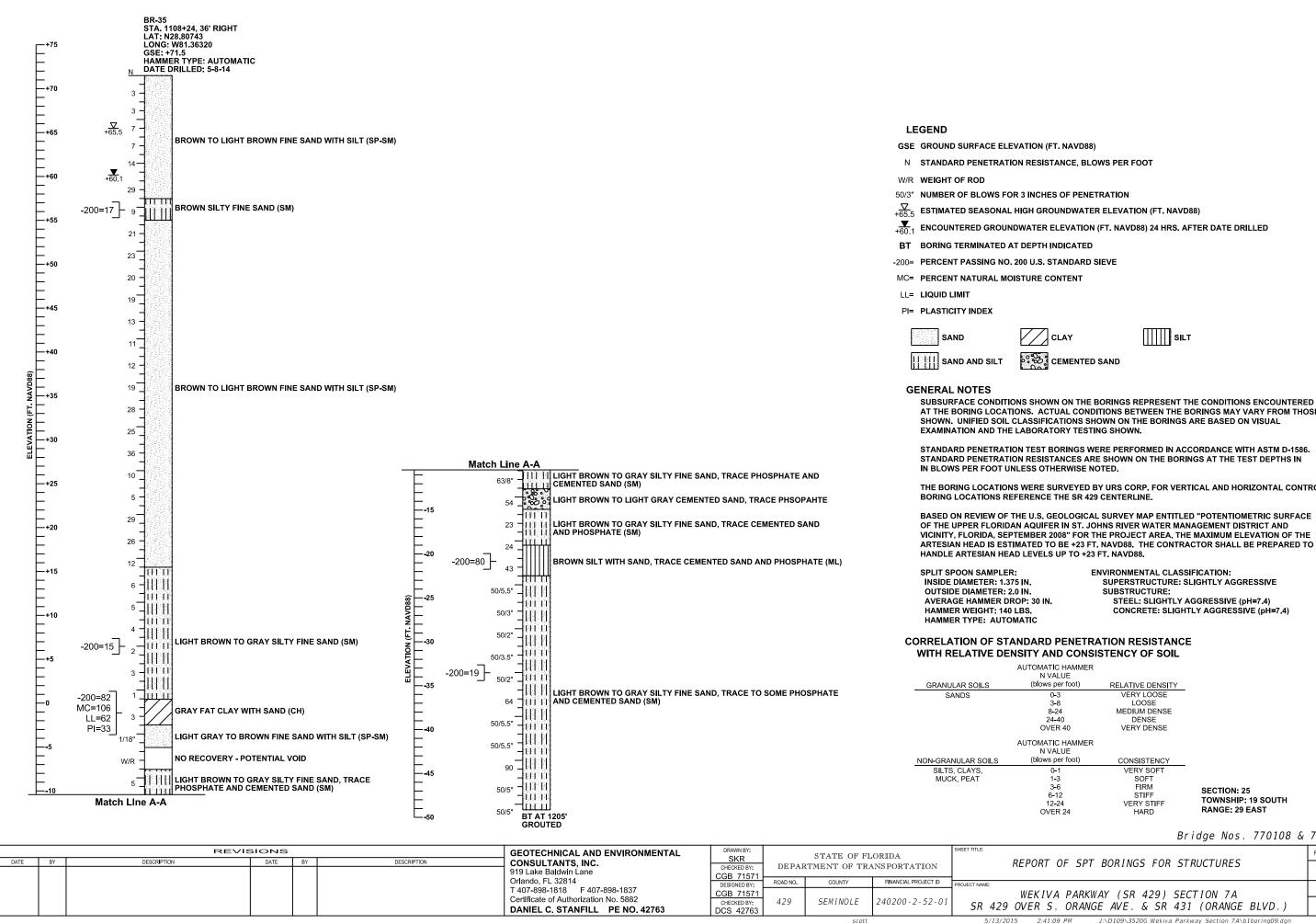
N (FT. NAVD88)				
SISTANCE, BLO	WS PER FOOT			
CLEARANCE				
CHES OF PENET	RATION			
GROUNDWATER	ELEVATION (FT. NA	VD88)		
ER ELEVATION (FT. NAVD88) 24 HRS	. AFTER DATE DRILLED		
TH INDICATED				
S. STANDARD S	IEVE			
E CONTENT				
SAND AND C		IENTED SAND		
 7] al av				
		T THE CONDITIONS END E BORINGS MAY VARY		
	OWN ON THE BORIN	GS ARE BASED ON VISU		
SISTANCES ARE	SHOWN ON THE BO	ACCORDANCE WITH AS DRINGS AT THE TEST DE		
OTHERWISE NO	DTED.			
E SURVEYED B		ERTICAL AND HORIZON	TAL CONTROL.	
S. GEOLOGICAL		LED "POTENTIOMETRIC	SURFACE	
JIFER IN ST. JOH	INS RIVER WATER M	ANAGEMENT DISTRICT	AND	
	NAVD88. THE CONT	RACTOR SHALL BE PR		
		SCIEICATION		
Er		SSIFICATION:	/E	
) IN.	SUBSTRUCTURE: STEEL: SLIGHTL	Y AGGRESSIVE (pH=7.4)	
	CONCRETE: SLIC	GHTLY AGGRESSIVE (pH	i= 7.4)	
	TION RESISTAN			
	STENCY OF SOIL			
MATIC HAMMER N VALUE				
lows per foot) 0-3	RELATIVE DENSITY	,		
0-3 3-8 8-24	LOOSE			
0-24 24-40 OVER 40	MEDIUM DENSE DENSE VERY DENSE			
MATIC HAMMER	VERT DENSE			
N VALUE lows per foot)	CONSISTENCY			
0-1 1-3	VERY SOFT SOFT	_		
3-6 6-12	FIRM	SECTION: 25		
12-24 OVER 24	VERY STIFF HARD	TOWNSHIP: 19 SC RANGE: 29 EAST	DUTH	
0121121	1,,,,,,			
		Bridge Nos. 7	70108 & 7701	09
ORT OF SPI	T BORINGS FOF	STRUCTURES	REF. DW	/G. NO.
	Dentines For	C STRUCTURES		
EKIVA PARK	WAY (SR 429)	SECTION 7A	SHEET	ΓNO.
		431 (ORANGE BL	.VD.) B7-	11

J:\D109\3520G Wekiva Parkway Section 7A\b1boring09.dgn 2:39:49 PM

240200 - 2 - 52 - 01

scott

429


CHECKED BY

DCS 42763

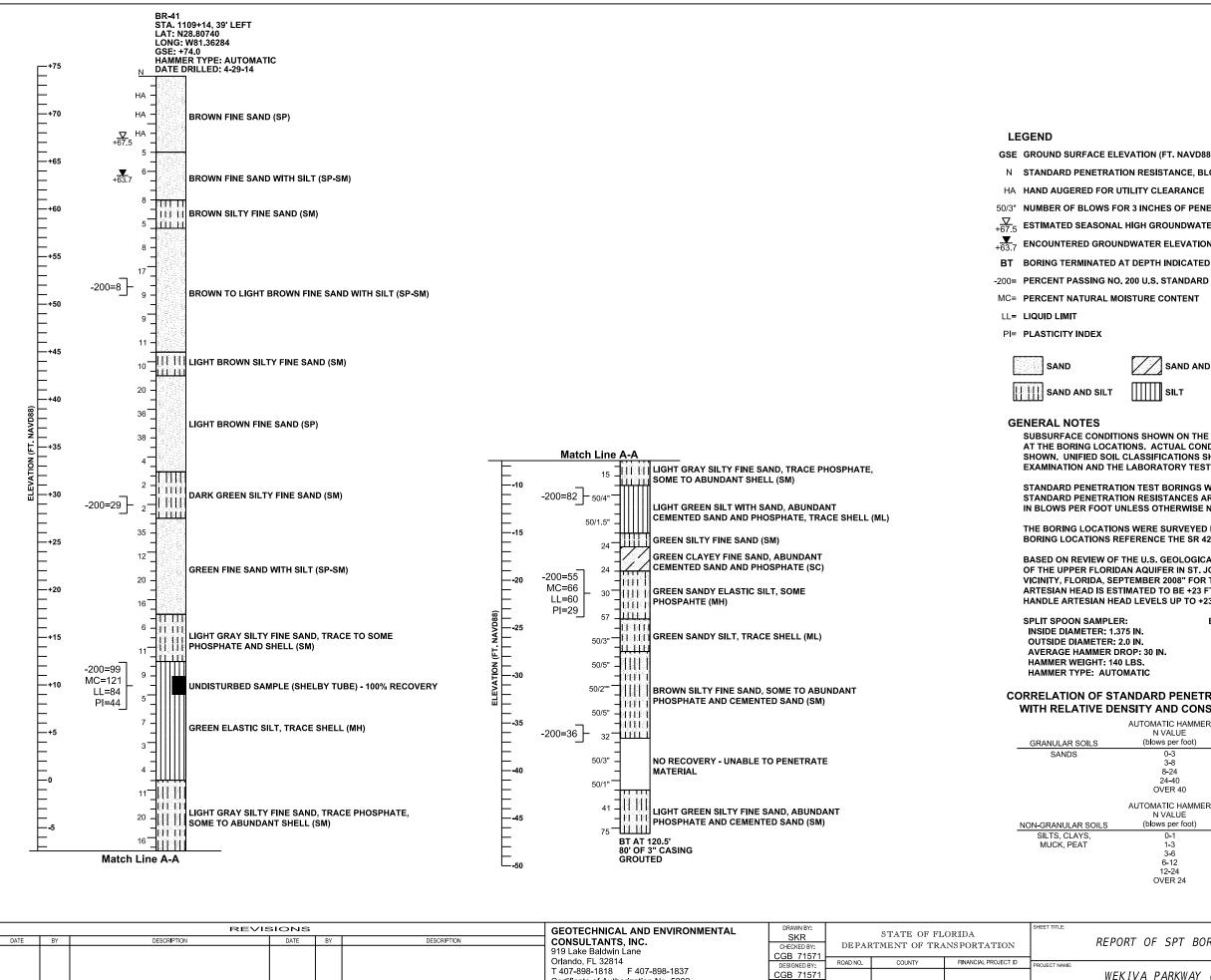
DANIEL C. STANFILL PE NO. 42763

	ATION (FT. NAVD8			
	N RESISTANCE, BI			
		ETRATION ER ELEVATION (FT. NAVD	201	
		N (FT. NAVD88) 24 HRS, AF		
	ING FLUID CIRCU			
	ING FLUID CIRCU			
	DEPTH INDICATE			
T FASSING NO. 2	.00 0.3. 3TANDARI	JSIEVE		
ND				
AND AND SILT				
BORING LOCATIO	ONS. ACTUAL CON	E BORINGS REPRESENT TH IDITIONS BETWEEN THE B SHOWN ON THE BORINGS / TING SHOWN.	ORINGS MAY VARY FROM	
ARD PENETRATIO	N TEST BORINGS	WERE PERFORMED IN ACC RE SHOWN ON THE BORIN		
RING LOCATIONS	WERE SURVEYED) BY URS CORP. FOR VERT	ICAL AND HORIZONTAL	CONTROL.
	ERENCE THE SR 4			
UPPER FLORIDAM Y, FLORIDA, SEPT AN HEAD IS ESTIN	N AQUIFER IN ST EMBER 2008'' FOR	AL SURVEY MAP ENTITLEI JOHNS RIVER WATER MAN THE PROJECT AREA, THE FT. NAVD88. THE CONTRA 23 FT. NAVD88.	AGEMENT DISTRICT AND MAXIMUM ELEVATION O	F THE
POON SAMPLER:		ENVIRONMENTAL CLASSI		
DIAMETER: 1.375 DE DIAMETER: 2.0		SUPERSTRUCTURE: SI SUBSTRUCTURE:	IGHTLY AGGRESSIVE	
AGE HAMMER DRO ER WEIGHT: 140 L ER TYPE: AUTOM	.BS.		GGRESSIVE (pH=7.4) LY AGGRESSIVE (pH=7.4))
ATION OF STAI	NDARD PENET	RATION RESISTANCE		
	SITY AND CON AUTOMATIC HAMME			
	N VALUE (blows per foot)			
JLAR SOILS ANDS	0-3	RELATIVE DENSITY VERY LOOSE		
	3-8 8-24	LOOSE MEDIUM DENSE		
	24-40 OVER 40	DENSE VERY DENSE		
	AUTOMATIC HAMME			
NULAR SOILS S, CLAYS,	(blows per foot) 0-1	CONSISTENCY VERY SOFT		
X, PEAT	1-3 3-6 6-12 12-24 OVER 24	SOFT FIRM STIFF VERY STIFF HARD	SECTION: 25 TOWNSHIP: 19 SOUTH RANGE: 29 EAST	
		Bridg	e Nos. 770108 &	770109
		DODINGS FOR STRUG		REF. DWG. NO.
REPC	JKI UF SPI E	BORINGS FOR STRUC	IUKES	
ECT NAME:	KIVA PARKWA	Y (SR 429) SECTIO	ΟN 7Δ	SHEET NO.
		AVE. & SR 431 (0		B7 - 12

^{5/13/2015 2:38:56} PM J:\D109\3520G Wekiva Parkway Section 7A\b1boring09.dgn

ION (FT. NAVD88)	
RESISTANCE, BLOWS PER FOOT	

AT THE BORING LOCATIONS. ACTUAL CONDITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE


STANDARD PENETRATION TEST BORINGS WERE PERFORMED IN ACCORDANCE WITH ASTM D-1586. STANDARD PENETRATION RESISTANCES ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN

THE BORING LOCATIONS WERE SURVEYED BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL.

VICINITY, FLORIDA, SEPTEMBER 2008" FOR THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE ARTESIAN HEAD IS ESTIMATED TO BE +23 FT. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO

	ENVIRONMENTAL CLASSIFICATION:
۱.	SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE
۱.	SUBSTRUCTURE:
: 30 IN.	STEEL: SLIGHTLY AGGRESSIVE (pH=7.4)
S.	CONCRETE: SLIGHTLY AGGRESSIVE (pH=7.4)
TIC	

SECTION: 25 TOWNSHIP: 19 SOUTH RANGE: 29 EAST Bridge Nos. 770108 & 770109 REF. DWG. NO. REPORT OF SPT BORINGS FOR STRUCTURES SHEET NO. WEKIVA PARKWAY (SR 429) SECTION 7A SR 429 OVER S. ORANGE AVE. & SR 431 (ORANGE BLVD.) B7 - 13

Certificate of Authorization No. 5882

DANIEL C. STANFILL PE NO. 42763

240200 - 2 - 52 - 01 scott

429

CHECKED BY

DCS 42763

SEMINOLE

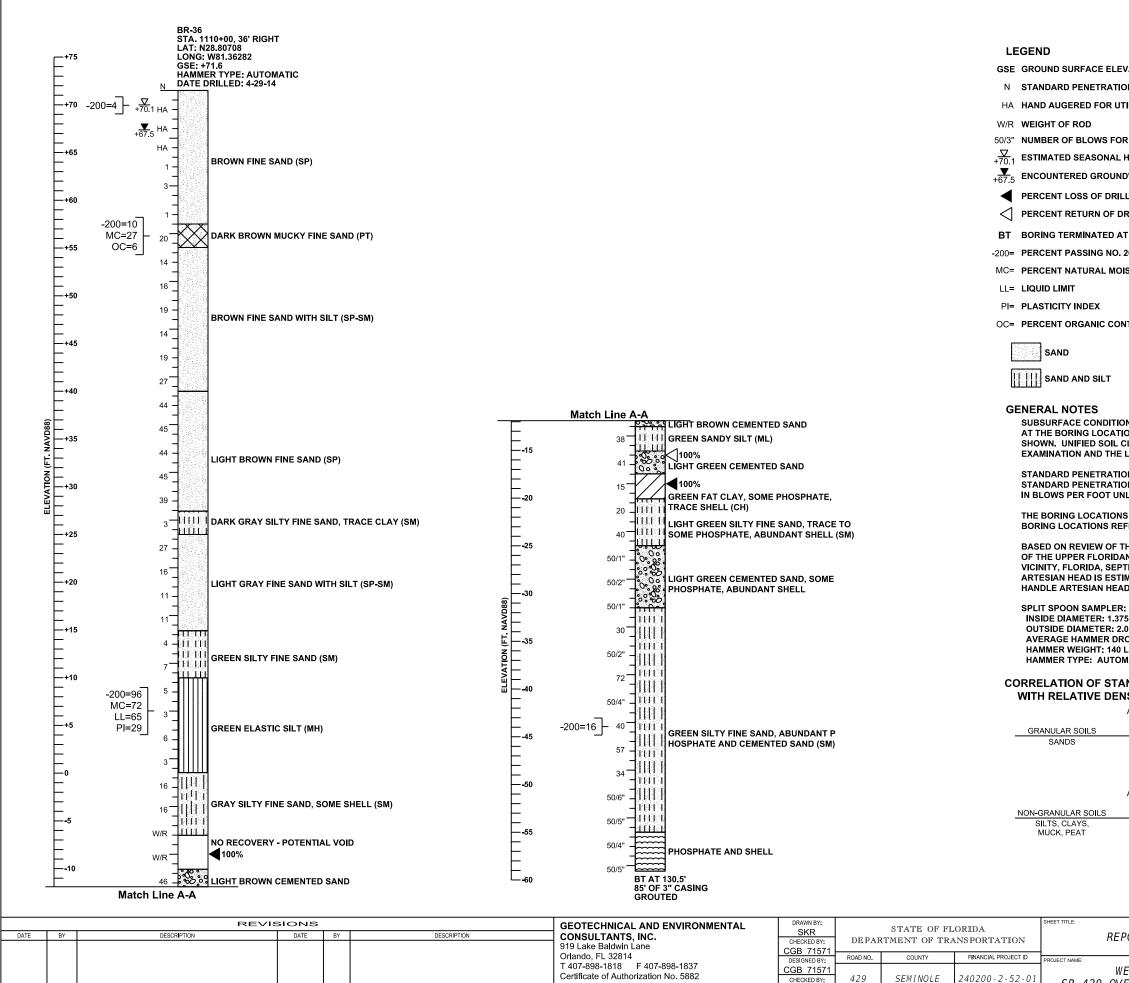
LEVATION	(FT. NAVD88)

- N STANDARD PENETRATION RESISTANCE, BLOWS PER FOOT
- 50/3" NUMBER OF BLOWS FOR 3 INCHES OF PENETRATION
- $\frac{\nabla}{+67.5}$ ESTIMATED SEASONAL HIGH GROUNDWATER ELEVATION (FT. NAVD88)
- $\mathbf{\Psi}_{+63.7}$ ENCOUNTERED GROUNDWATER ELEVATION (FT. NAVD88) 24 HRS. AFTER DATE DRILLED
- -200= PERCENT PASSING NO. 200 U.S. STANDARD SIEVE

\square	SAND AND CLAY
	SILT

SUBSURFACE CONDITIONS SHOWN ON THE BORINGS REPRESENT THE CONDITIONS ENCOUNTERED AT THE BORING LOCATIONS. ACTUAL CONDITIONS BETWEEN THE BORINGS MAY VARY FROM THOSE SHOWN. UNIFIED SOIL CLASSIFICATIONS SHOWN ON THE BORINGS ARE BASED ON VISUAL EXAMINATION AND THE LABORATORY TESTING SHOWN.

STANDARD PENETRATION TEST BORINGS WERE PERFORMED IN ACCORDANCE WITH ASTM D-1586. STANDARD PENETRATION RESISTANCES ARE SHOWN ON THE BORINGS AT THE TEST DEPTHS IN IN BLOWS PER FOOT UNLESS OTHERWISE NOTED.


THE BORING LOCATIONS WERE SURVEYED BY URS CORP. FOR VERTICAL AND HORIZONTAL CONTROL. BORING LOCATIONS REFERENCE THE SR 429 CENTERLINE.

BASED ON REVIEW OF THE U.S. GEOLOGICAL SURVEY MAP ENTITLED "POTENTIOMETRIC SURFACE OF THE UPPER FLORIDAN AQUIFER IN ST. JOHNS RIVER WATER MANAGEMENT DISTRICT AND VICINITY, FLORIDA, SEPTEMBER 2008" FOR THE PROJECT AREA, THE MAXIMUM ELEVATION OF THE ARTESIAN HEAD IS ESTIMATED TO BE +23 FT. NAVD88. THE CONTRACTOR SHALL BE PREPARED TO HANDLE ARTESIAN HEAD LEVELS UP TO +23 FT. NAVD88.

LER:	ENVIRONMENTAL CLASSIFICATION:
1.375 IN.	SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE
R: 2.0 IN.	SUBSTRUCTURE:
DROP: 30 IN.	STEEL: SLIGHTLY AGGRESSIVE (pH=7.4)
140 LBS.	CONCRETE: SLIGHTLY AGGRESSIVE (pH=7.4)
TOMATIC	. ,

CORRELATION OF STANDARD PENETRATION RESISTANCE WITH RELATIVE DENSITY AND CONSISTENCY OF SOIL

	AUTOMATIC HAMMER N VALUE			
NULAR SOILS	(blows per foot)	RELATIVE DENSITY		
SANDS	0-3	VERY LOOSE		
	3-8	LOOSE		
	8-24	MEDIUM DENSE		
	24-40	DENSE		
	OVER 40	VERY DENSE		
	AUTOMATIC HAMMER			
	N VALUE			
RANULAR SOILS	(blows per foot)	CONSISTENCY		
TS, CLAYS,	0-1	VERY SOFT		
UCK, PEAT	1-3	SOFT		
	3-6	FIRM	SECTION: 30	
	6-12	STIFF	TOWNSHIP: 19 SOUT	гн
	12-24	VERY STIFF	RANGE: 29 EAST	
	OVER 24	HARD	RANGE. 29 EAST	
		Bridge	Nos. 770108 &	770109
T TITLE:				
0.5				REF. DWG. NO.
KE	PORT OF SPT BORIN	GS FOR STRUCT	URES	
ECT NAME:				SHEET NO.
	VEKIVA PARKWAY (SH	,		
SR 429 OV	VER S. ORANGE AVE	. & SR 431 (OF	RANGE BLVD.)	B7 - 14

DANIEL C. STANFILL PE NO. 42763

DCS 42763

scott

VATION (FT. NAVD8) DN RESISTANCE, BL TILITY CLEARANCE					
R 3 INCHES OF PENI HIGH GROUNDWAT DWATER ELEVATIO LING FLUID CIRCUL RILLING FLUID CIRCU T DEPTH INDICATED 200 U.S. STANDARD	ER ELEVATION (FT N (FT. NAVD88) 24 LATION CULATION		R DATE I	DRILLED	
ITENT					
SILT	SAND AN			PHOSPHATE A	AND SHELL
INS SHOWN ON THE ONS. ACTUAL CON CLASSIFICATIONS S LABORATORY TES	DITIONS BETWEEN HOWN ON THE BO	THE BOR	NGS MA	Y VARY FROM	
ON TEST BORINGS V ON RESISTANCES A	VERE PERFORMED RE SHOWN ON THE				
S WERE SURVEYED	BY URS CORP. FO		AL AND H	ORIZONTAL CO	ONTROL.
HE U.S. GEOLOGIC N AQUIFER IN ST. J TEMBER 2008'' FOR MATED TO BE +23 F D LEVELS UP TO +2	OHNS RIVER WATE THE PROJECT ARE T. NAVD88. THE C	ER MANAG EA, THE MA	EMENT D	DISTRICT AND	THE
5 IN. 0 IN. 0P: 30 IN. LBS. MATIC	ENVIRONMENTAL SUPERSTRUCT SUBSTRUCTUR STEEL: SLIG CONCRETE:	URE: SLIGI E: HTLY AGG	HTLY AG RESSIVE		
NDARD PENET					
AUTOMATIC HAMMER N VALUE (blows per foot)	RELATIVE DEN	SITY			
0-3 3-8 8-24 24-40 OVER 40	VERY LOOS LOOSE MEDIUM DEN DENSE VERY DENS	ISE			
AUTOMATIC HAMMER N VALUE (blows per foot)		27			
0-1 1-3 3-6 6-12 12-24 OVER 24	CONSISTENC VERY SOFT SOFT FIRM STIFF VERY STIFF HARD	T F	SECTION TOWNSH RANGE: 3	IP: 19 SOUTH	
		Bridge	Nos.	770108 &	770109
PORT OF SPT L	30RINGS FOR	STRUCT	URES		REF. DWG. NO.

SHEET NO. WEKIVA PARKWAY (SR 429) SECTION 7A SR 429 OVER S. ORANGE AVE. & SR 431 (ORANGE BLVD.) B7 - 15 5/13/2015 2:35:18 PM J:\D109\3520G Wekiva Parkway Section 7A\b1boring09.dgn

CORROSION SERIES TEST RESULTS

Table 15Summary of Bridge Corrosion Series Test ResultsWekiva Parkway (SR 429) - Section 7A

FPID No. 240200-2-52-01

GEC Project No. 3520G

Duideo Cito	Boring	Soil Classification	Sample		Minimum Desistivity (shree	Chlorides	Sulfates	Substructural Enviror	nmental Classification
Bridge Site	No.	Soli Classification	Depth (feet)	рН	Resistivity (ohm- cm)	(ppm)	(ppm)	Concrete	Steel
SR 429 at Osprey	BR-3	SP	2 - 4	7.9	26,000	45	< 5	Slightly Aggressive	Slightly Aggressive
Hammock Trail	BR-3	SM	8 - 10	7.8	5,100	60	20	Slightly Aggressive	Slightly Aggressive
SR 429 at Longwood	BR-9	SP-SM	6 - 13	5.7	16,000	45	< 5	Moderately Aggressive	Extremely Aggressive
Markham Road	BR-10	SP-SM	0 - 6	5.7	66,000	45	< 5	Moderately Aggressive	Extremely Aggressive
SR 429 at Yankee Lake	BR-15	SP-SM	0 - 6	7.6	32,000	30	30	Slightly Aggressive	Slightly Aggressive
Road	BR-15	SM	11.5 - 13	5.6	9,200	45	68	Moderately Aggressive	Extremely Aggressive
SR 429 at Lake	BR-21	SP	6 - 10	6.0	10,000	45	15	Moderately Aggressive	Moderately Aggressive
Markham Road	BR-22	SP	0 - 6	5.8	11,000	45	< 5	Moderately Aggressive	Extremely Aggressive
SR 429 at Glade View	BR-26	SC	0 - 6	5.3	22,000	75	15	Moderately Aggressive	Extremely Aggressive
Drive	BR-27	SP	0 - 6	6.7	21,000	45	< 5	Slightly Aggressive	Moderately Aggressive
SR 429 at EB Frontage	BR-30A	SP	0 - 6	6.2	58,000	60	25	Slightly Aggressive	Moderately Aggressive
Road	BR-30A	SP-SM	8 - 15.5	5.4	17,000	45	39	Moderately Aggressive	Extremely Aggressive
SR 429 at Orange Blvd.	BR-36	SP	0 - 6	7.4	32,000	60	< 5	Slightly Aggressive	Slightly Aggressive
& Wayside Dr.	BR-37	SP	0 - 6	7.4	43,000	45	66	Slightly Aggressive	Slightly Aggressive

SUMMARY OF MONITOR EXISTING STRUCTURES

Wekiva Parkway (SR 429) - Section 7A Financial Project ID 240200-2-52-01 GEC Project No. 3520G

		SUN	IMARY OF	MONITOR	EXISITING	STRUCTUR	ES				
Site	LOCATION ADDRESS	STRUCTURE	INSPECTION & SETTLEMENT MONITORING		VIBRATION MONITORING		GROUNDWATER MONITORING		DESIGN NOTES	CONSTRUCTION	
No.	(or Station)	USAGE	010	08 1	010	08 2	010	08 3		REMARKS	
		_	L	S	L	S	l	LS			
			Р	F	Р	F	Р	F			
1	100 Ross Lake Ln, Sanford FL 32771	Residential			х				Pile driving operations		
1	CL Const SR 429 STA 981+45, 260' RT	Nesidential			^						
2	500 Cinder Pt, Sanford FL 32771	Residential			х				Pile driving operations		
2	CL Const SR 429 STA 1106+05, 227' RT	Residential			^						
3	509 Cinder Pt, Sanford FL 32771	Residential			х				Pile driving operations		
5	CL Const SR 429 STA 1108+45, 231' RT	Residential			^						
4	5700 Red Anchor Cv, Sanford FL 32771	Residential			х				Pile driving operations		
4	CL Const SR 429 STA 1109+90, 237' RT	Residential			^						
5	5680 Wayside Dr, Sanford FL 32771	Eye Doctor			х				Rile driving operations		
5	CL Const SR 429 STA 1106+75, 395' LT	Eye Doctor			^				Pile driving operations		
6	170 S. Orange Ave, Sanford FL 32771	Residential					х		Subsoil excavation of Pond CC		
0	CL Const S Orange Ave Ext STA 807+00, 170' LT	Residential					^				
		TOTAL:	1		1		1				

Note: This list includeds existing structures (as determined by the department) located outside the limits specified in aritle 108-2 of the FDOT Specifications that are reuiqre to be monitored. This list should not be considered all inclusive and does not contain existing structures to be monitored that are located within the distances specified in Article 108-2.

FB-MULTI PIER SOIL PARAMETERS

Project Name: Wekiva Pkwy Sec GEC Project Number: 3520G FPID No: 240200-2-52-		- - -	GSE @ Boring Lo Water Table Elev Ant. Pile Tip Elev	vation (ft):	+54.7 +44.8 -13.0		Elevation Datum: Foundation: Reference Boring(s):		NA 770100 BR	
Layer No.	³ MSE Fill	1	2	3	4	5	6			
Soil Description ID*	SND	SND	SND	SND	CLY	SND	SND			
Soil Type	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesive	Cohesionless	Cohesionless			
_ayer Top Elevation (ft)	+73	+55	+45	0	-25	-31	-37			
ayer Bottom Elevation (ft)	+55	+45	0	-25	-31	-37	-61			
ayer Thickness (ft)	18	10	45	25	6	6	24			
verage N-Value, N _{avg} (bpf) ²	10	3	13	46	14	14	60			
Corrected N-Value, N ₆₀ (bpf)	10	2	12	41	13	13	54			
ateral Properties										
Recommended Lateral Soil Model	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Clay (Stiff < Water)	Sand (Reese)	Sand (Reese)			
Γotal Unit Weight, γ (pcf)	105	92	107	127	117	107	132			
Angle of Internal Friction, ϕ (degrees)	30	26	30	34		30	36			
Subgrade Modulus, K (pci)	60	15	60	110	500	60	125			
Indrained Shear Strength, c _u (psf)					1,733					
/ajor Principal Strain at 50%, ε ₅₀					0.007					
verage Undrained Shear Strength, C _{avg} (psf)					1,733					
Jnconfined Compressive Strength, qu (psf)										
Axial/Torsional Properties										
Recommended Axial Soil Model		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile			
Recommended Torsional Soil Model		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic			
Shear Modulus, G (ksi)		0.13	0.67	2.03	0.42	0.72	2.59			
Poisson's Ratio, v		0.10	0.25	0.40	0.45	0.25	0.45			
Jndrained Shear Strength, c _u (psf)					1,733					
angle of Internal Friction, φ (degrees)		26	30	34		30	36			
oungs Modulus, E (psf)		40,000	240,000	820,000		260,000	1,080,000			
Concrete ¹ Ultimate Unit Skin Friction, T _f (psf)		76	456	1558	1259	494	2052			
lip Model										
Recommended Tip Soil Model		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile			
Shear Modulus, G (ksi)		0.13	0.67	2.03	0.42	0.72	2.59			
Poisson's Ratio, v		0.10	0.25	0.40	0.45	0.25	0.45			
Jncorrected N-value (bpf)										
Jndrained Shear Strength, c _u (psf)										

*ID General Soil Description

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)

SIH Elastic Silt (MH)

- WLS Weathered Limestone
- LST Limestone
- MCK Muck (PT)

SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

3. Soil resistance generated by the MSE wall fill should only be included when resisting a lateral load that causes pile deflection into the abutment fill (one direction only). Lateral resistance on the other 3 sides of the end bent piles should be assumed to be zero within the MSE wall fill.

Pile Type	End Area (in ²)
18" Square PPC Pile:	324.0
24" Square PPC Pile:	576.0
14x89 Steel H Pile:	26.1
20" Steel Pipe Pile (closed end):	314.2

Project Name: GEC Project Number: FPID No:	Project Number: 3520G			GSE @ Boring Lo Water Table Elev Ant. Pile Tip Elev	vation (ft):	+55.5 +44.0 -36.0	NAVD 770099 (EB1) BR-10			
Layer No.		³ MSE Fill	1	2	3	4	5	6	7	
Soil Description ID*		SND	SND	SND	SND	SND	SND	SND	WLS	
Soil Type		Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	
Layer Top Elevation (ft)		+73	+55	+46	-23	-34	-49	-64	-68	
Layer Bottom Elevation (ft)		+55	+46	-23	-34	-49	-64	-68	-83	
Layer Thickness (ft)		18	9	69	11	15	15	4	15	
Average N-Value, N _{avg} (bpf) ²		10	5	17	2	60	30	60	37	
Corrected N-Value, N ₆₀ (bpf)		10	3	15	2	54	27	54	33	
Lateral Properties										
Recommended Lateral Soil Model		Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	
Total Unit Weight, y (pcf)		105	97	112	92	132	117	132	122	
Angle of Internal Friction, ϕ (degre	es)	30	28	31	26	36	32	36	39	
Subgrade Modulus, K (pci)		60	20	70	15	125	80	125	250	
Undrained Shear Strength, cu (psf)									
Major Principal Strain at 50%, ϵ_{50}										
Average Undrained Shear Strengt	h, C _{avg} (psf)									
Unconfined Compressive Strength	i, q _u (psf)									
Axial/Torsional Properties										
Recommended Axial Soil Model			Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	
Recommended Torsional Soil Mod	lel		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	
Shear Modulus, G (ksi)			0.18	0.81	0.13	2.59	1.44	2.59	8.81	
Poisson's Ratio, v			0.15	0.28	0.10	0.45	0.30	0.45	0.30	
Undrained Shear Strength, c _u (psf)									
Angle of Internal Friction, ϕ (degre	es)		28	31	26	36	32	36	39	
Youngs Modulus, E (psf)			60,000	300,000	40,000	1,080,000	540,000	1,080,000	3,300,000	
Concrete ¹ Ultimate Unit Skin Fric	tion, T _f (psf)		114	570	76	2052	1026	2052	660	
Tip Model										
Recommended Tip Soil Model			Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	
Shear Modulus, G (ksi)			0.18	0.81	0.13	2.59	1.44	2.59	8.81	
Poisson's Ratio, v			0.15	0.28	0.10	0.45	0.30	0.45	0.30	
Uncorrected N-value (bpf)										
Undrained Shear Strength, c_u (psf)									
24" Square PPC Pile **Bearing	Failure, Q _f (kips)					1,382	691	1,382	950	

<u>*ID</u> <u>General Soil Description</u>

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)

SIH Elastic Silt (MH)

- WLS Weathered Limestone
- LST Limestone
- MCK Muck (PT)

SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

3. Soil resistance generated by the MSE wall fill should only be included when resisting a lateral load that causes pile deflection into the abutment fill (one direction only). Lateral resistance on the other 3 sides of the end bent piles should be assumed to be zero within the MSE wall fill.

Pile Type	End Area (in ²)
18" Square PPC Pile:	324.0
24" Square PPC Pile:	576.0
14x89 Steel H Pile:	26.1
20" Steel Pipe Pile (closed end):	314.2

Project Name: Wekiva Pkwy Sect	tion 7A		GSE @ Boring L		+57.0		Elevation Datum:	NAVD
GEC Project Number: 3520G			Water Table Elev		+43.5		Foundation:	770099-100 (P2
FPID No: 240200-2-52-0	01		Ant. Pile Tip Elev	ation (ft):	-56.0		Reference Boring(s):	BR-8
Layer No.	1	2	3	4	5	6]	
Soil Description ID*	SND	SND	SND	SIL	SND	SND		
Soil Type	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	_	
Layer Top Elevation (ft)	+52	+48	+10	-30	-54	-80	_	
Layer Bottom Elevation (ft)	+48	+10	-30	-54	-80	-83	_	
Layer Thickness (ft)	4	38	40	24	26	3	-	
Average N-Value, N _{avg} (bpf) ²	5	12	21	3	60	25		
Corrected N-Value, N ₆₀ (bpf)	3	11	19	3	54	23		
_ateral Properties								
Recommended Lateral Soil Model	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)		
Total Unit Weight, γ (pcf)	97	107	112	102	132	117		
Angle of Internal Friction, ϕ (degrees)	28	30	31	14	36	32		
Subgrade Modulus, K (pci)	20	60	70	50	125	80	_	
Jndrained Shear Strength, c _u (psf)								
Major Principal Strain at 50%, ϵ_{50}								
Average Undrained Shear Strength, C _{avg} (psf)								
Unconfined Compressive Strength, q _u (psf)								
Axial/Torsional Properties								
Recommended Axial Soil Model	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile		
Recommended Torsional Soil Model	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic		
Shear Modulus, G (ksi)	0.18	0.61	1.03	0.09	2.59	1.23		
Poisson's Ratio, v	0.15	0.25	0.28	0.20	0.45	0.30		
Undrained Shear Strength, c _u (psf)								
Angle of Internal Friction,	28	30	31	14	36	32]	
Youngs Modulus, E (psf)	60,000	220,000	380,000	30,000	1,080,000	460,000	J	
Concrete ¹ Ultimate Unit Skin Friction, T _f (psf)	114	418	722	280	2052	874		
Tip Model							1	
Recommended Tip Soil Model	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile]	
Shear Modulus, G (ksi)	0.18	0.61	1.03	0.09	2.59	1.23	J	
Poisson's Ratio, v	0.15	0.25	0.28	0.20	0.45	0.30	J	
Uncorrected N-value (bpf)							1	
Undrained Shear Strength, c _u (psf)								
24" Square PPC Pile **Bearing Failure, Q _f (kips)					1.382	589		

*ID General Soil Description

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)

SIH Elastic Silt (MH)

- WLS Weathered Limestone
- LST Limestone
- MCK Muck (PT)
- SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

Pile Type	End Area (in ²)
18" Square PPC Pile:	324.0
24" Square PPC Pile:	576.0
14x89 Steel H Pile:	26.1
20" Steel Pipe Pile (closed end):	314.2

Project Name: Wekiva Pkwy Secti GEC Project Number: 3520G			GSE @ Boring Lo Water Table Elev	ation (ft):	+55.8 +42.0		NAVD 770099-100 (EB3)		
FPID No: 240200-2-52-0)1	-	Ant. Pile Tip Eleva	ation (ft):	-26.0	-	Reference Boring	(s):	BR-12
Layer No.	³ MSE Fill	1	2	3	4	5	6	7	8
Soil Description ID*	SND	SND	SND	SND	SIL	SIL	SIL	SIL	SIL
Soil Type	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless
Layer Top Elevation (ft)	+77	+56	+44	-15	-26	-33	-41	-46	-51
Layer Bottom Elevation (ft)	+56	+44	-15	-26	-33	-41	-46	-51	-60
Layer Thickness (ft)	21	12	59	11	7	8	5	5	9
Average N-Value, N _{avg} (bpf) ²	10	8	19	3	60	21	53	19	60
Corrected N-Value, N ₆₀ (bpf)	10	5	17	3	54	19	48	17	54
Lateral Properties									
Recommended Lateral Soil Model	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Total Unit Weight, γ (pcf)	105	102	112	97	127	117	127	117	127
Angle of Internal Friction, ϕ (degrees)	30	29	31	28	32	24	32	24	32
Subgrade Modulus, K (pci)	60	30	70	20	300	200	300	200	300
Undrained Shear Strength, c _u (psf)									
Major Principal Strain at 50%, ϵ_{50}									
Average Undrained Shear Strength, Cavg (psf)									
Unconfined Compressive Strength, q _u (psf)									
Axial/Torsional Properties									
Recommended Axial Soil Model		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Recommended Torsional Soil Model		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Shear Modulus, G (ksi)		0.29	0.92	0.18	1.29	0.49	1.15	0.44	1.29
Poisson's Ratio, v		0.20	0.28	0.15	0.45	0.35	0.45	0.35	0.45
Undrained Shear Strength, c _u (psf)									
Angle of Internal Friction,		29	31	28	32	24	32	24	32
Youngs Modulus, E (psf)		100,000	340,000	60,000	540,000	190,000	480,000	170,000	540,000
Concrete ¹ Ultimate Unit Skin Friction, T _f (psf)		190	646	114	2639	1509	2597	1380	2639
Tip Model									
Recommended Tip Soil Model		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Shear Modulus, G (ksi)		0.29	0.92	0.18	1.29	0.49	1.15	0.44	1.29
Poisson's Ratio, v		0.20	0.28	0.15	0.45	0.35	0.45	0.35	0.45
Uncorrected N-value (bpf)									
Undrained Shear Strength, c _u (psf)									
24" Square PPC Pile **Bearing Failure, Q _f (kips)					691	243	614	218	691

**Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

**Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

End Area (in²)

324.0

576.0

26.1

314.2

*ID General Soil Description

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)

Elastic Silt (MH) SIH

WLS Weathered Limestone LST Limestone

MCK Muck (PT)

SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

3. Soil resistance generated by the MSE wall fill should only be included when resisting a lateral load that causes pile deflection into the abutment fill (one direction only).

Pile Type 18" Square PPC Pile:

24" Square PPC Pile:

20" Steel Pipe Pile (closed end):

14x89 Steel H Pile:

Lateral resistance on the other 3 sides of the end bent piles should be assumed to be zero within the MSE wall fill.

Project Name: Wekiva Pkwy Secti GEC Project Number: 3520G			GSE @ Boring Lo Water Table Elev	ation (ft):	+54.2 +45.8	(-)	NAVD 770101-2 (EB1)		
FPID No: 240200-2-52-0	1		Ant. Pile Tip Eleva	ation (itt):	-18.0	-	Reference Boring	(S):	BR-16
Layer No.	³ MSE Fill	1	2	3	4	5	6	7	8
Soil Description ID*	SND	SND	SND	SND	SND	SND	SND	SND	SND
Soil Type	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless
Layer Top Elevation (ft)	+76	+54	+5	-2	-7	-15	-23	-30	-35
Layer Bottom Elevation (ft)	+54	+5	-2	-7	-15	-23	-30	-35	-50
Layer Thickness (ft)	22	49	7	5	8	8	7	5	15
Average N-Value, N _{avg} (bpf) ²	10	15	4	31	7	60	25	60	44
Corrected N-Value, N ₆₀ (bpf)	10	14	4	28	6	54	23	54	40
_ateral Properties									
Recommended Lateral Soil Model	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Total Unit Weight, γ (pcf)	105	107	102	117	102	132	117	132	127
Angle of Internal Friction,	30	30	29	32	29	36	32	36	34
Subgrade Modulus, K (pci)	60	60	30	80	30	125	80	125	110
Undrained Shear Strength, c _u (psf)									
Major Principal Strain at 50%, ϵ_{50}									
Average Undrained Shear Strength, Cavg (psf)									
Unconfined Compressive Strength, q _u (psf)									
Axial/Torsional Properties									
Recommended Axial Soil Model		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Recommended Torsional Soil Model		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Shear Modulus, G (ksi)		0.78	0.23	1.50	0.35	2.59	1.23	2.59	1.98
Poisson's Ratio, v		0.25	0.20	0.30	0.20	0.45	0.30	0.45	0.40
Undrained Shear Strength, c _u (psf)									
Angle of Internal Friction, ϕ (degrees)		30	29	32	29	36	32	36	34
Youngs Modulus, E (psf)		280,000	80,000	560,000	120,000	1,080,000	460,000	1,080,000	800,000
Concrete ¹ Ultimate Unit Skin Friction, T _f (psf)		532	152	1064	228	2052	874	2052	1520
Tip Model									
Recommended Tip Soil Model		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Shear Modulus, G (ksi)		0.78	0.23	1.50	0.35	2.59	1.23	2.59	1.98
Poisson's Ratio, v		0.25	0.20	0.30	0.20	0.45	0.30	0.45	0.40
Uncorrected N-value (bpf)									
Undrained Shear Strength, c _u (psf)									
24" Square PPC Pile **Bearing Failure, Q _f (kips)						1,382	589	1,382	1.024

**Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

**Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

End Area (in²)

324.0

576.0

26.1

314.2

*ID General Soil Description

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)

SIH Elastic Silt (MH)

WLS Weathered Limestone

LST Limestone

MCK Muck (PT)

SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

3. Soil resistance generated by the MSE wall fill should only be included when resisting a lateral load that causes pile deflection into the abutment fill (one direction only).

<u>Pile Type</u> 18" Square PPC Pile:

24" Square PPC Pile:

20" Steel Pipe Pile (closed end):

14x89 Steel H Pile:

Lateral resistance on the other 3 sides of the end bent piles should be assumed to be zero within the MSE wall fill.

Project Name: Wekiva Pkwy Sect GEC Project Number: 3520G FPID No: 240200-2-52-0			GSE @ Boring L Water Table Elev Ant. Pile Tip Elev	vation (ft):	+55.8 +46.0 -24.0	- - -	Elevation Datum: Foundation: Reference Boring		NAVD 770101-2 (P2) BR-17		
Layer No.	1	2	3	4	5	6	7	8	9	10	
Soil Description ID*	SND	SND	SND	CLY	SND	SND	SND	SND	SND	SND	
Soil Type	Cohesionless	Cohesionless	Cohesionless	Cohesive	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	
Layer Top Elevation (ft)	+54	+45	+32	+21	+18	+3	-6	-11	-26	-88	
Layer Bottom Elevation (ft)	+45	+32	+21	+18	+3	-6	-11	-26	-42	-51	
Layer Thickness (ft)	9	13	11	3	15	9	5	15	16	-37	
Average N-Value, N _{avg} (bpf) ²	6	19	11	6	14	3	17	3	35	60	
Corrected N-Value, N ₆₀ (bpf)	4	16	10	5	13	3	15	3	32	54	
Lateral Properties											
Recommended Lateral Soil Model	Sand (Reese)	Sand (Reese)	Sand (Reese)	Clay (Stiff < Water)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	
Total Unit Weight, ɣ (pcf)	102	112	107	112	107	97	112	97	122	132	
Angle of Internal Friction,	29	31	30		30	28	31	28	33	36	
Subgrade Modulus, K (pci)	30	70	60	100	60	20	70	20	90	125	
Undrained Shear Strength, c _u (psf)				667							
Major Principal Strain at 50%, ϵ_{50}				0.01							
Average Undrained Shear Strength, Cavy (psf)				667							
Unconfined Compressive Strength, q _u (psf)											
Axial/Torsional Properties											
Recommended Axial Soil Model	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	
Recommended Torsional Soil Model	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	
Shear Modulus, G (ksi)	0.23	0.87	0.56	0.16	0.72	0.18	0.81	0.18	1.65	2.59	
Poisson's Ratio, v	0.20	0.28	0.25	0.45	0.25	0.15	0.28	0.15	0.35	0.45	
Undrained Shear Strength, c _u (psf)				667							
Angle of Internal Friction, ϕ (degrees)	29	31	30		30	28	31	28	33	36	
Youngs Modulus, E (psf)	80,000	320,000	200,000		260,000	60,000	300,000	60,000	640,000	1,080,000	
Concrete ¹ Ultimate Unit Skin Friction, T _f (psf)	152	608	380	524	494	114	570	114	1216	2052	
Tip Model											
Recommended Tip Soil Model	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	
Shear Modulus, G (ksi)	0.23	0.87	0.56	0.16	0.72	0.18	0.81	0.18	1.65	2.59	
Poisson's Ratio, v	0.20	0.28	0.25	0.45	0.25	0.15	0.28	0.15	0.35	0.45	
Uncorrected N-value (bpf)											
Undrained Shear Strength, c _u (psf)											
24" Square PPC Pile **Bearing Failure, Q _f (kips)								77	819	1,382	

<u>*ID</u> <u>General Soil Description</u>

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)

SIH Elastic Silt (MH)

- WLS Weathered Limestone
- LST Limestone
- MCK Muck (PT)
- SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

1 2 1 21	
Pile Type	End Area (in ²)
18" Square PPC Pile:	324.0
24" Square PPC Pile:	576.0
14x89 Steel H Pile:	26.1
20" Steel Pipe Pile (closed end):	314.2

Project Name: Wekiva Pkwy Sec GEC Project Number: 3520G FPID No: 240200-2-52-			GSE @ Boring L Water Table Elev Ant. Pile Tip Elev	vation (ft):	+52.5 +44.5 -24.0		 	NAVD 770101-2 (EB BR-15	
	³ MSE Fill				4				
Layer No.		1	2	3	4	5	6	7	
Soil Description ID* Soil Type	SND	SND	SIL	SND	SND	SND	SND	LST	
Layer Top Elevation (ft)	Cohesionless +71	Cohesionless +53	Cohesionless +26	Cohesionless +12	Cohesionless +7	Cohesionless -9	Cohesionless -20	Rock -52	
Layer Bottom Elevation (ft)	+71	+33	+20	+12	-9	-9 -20	-20	-52	
_ayer Thickness (ft)	19	27	14	5	-9	11	32	-56	
Average N-Value, N _{avg} (bpf) ²	10	13	9	26	10	4	60	60	
*	10		8	23	12	4		54	
Corrected N-Value, N ₆₀ (bpf)	10	11	8	23	11	4	54	54	
ateral Properties									
Recommended Lateral Soil Model	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Limestone (McVay)	
Γotal Unit Weight, γ (pcf)	105	107	112	117	107	102	132	145	
Angle of Internal Friction,	30	30	22	32	30	29	36	40	
Subgrade Modulus, K (pci)	60	60	100	80	60	30	125	2,000	
Jndrained Shear Strength, c _u (psf)								80,000	
Major Principal Strain at 50%, ε ₅₀								0.0001	
Average Undrained Shear Strength, Cava (psf)								80,000	
Jnconfined Compressive Strength, q _u (psf)								160,000	
Axial/Torsional Properties									
Recommended Axial Soil Model		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	
Recommended Torsional Soil Model		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	
Shear Modulus, G (ksi)		0.61	0.21	1.23	0.61	0.23	2.59	27.78	
Poisson's Ratio, v		0.25	0.30	0.30	0.25	0.20	0.45	0.35	
Jndrained Shear Strength, c _u (psf)								80,000	
Angle of Internal Friction, (degrees)		30	22	32	30	29	36	40	
Youngs Modulus, E (psf)		220,000	80,000	460,000	220,000	80,000	1,080,000	10,800,000	
Concrete ¹ Ultimate Unit Skin Friction, T _f (psf)		418	712	874	418	152	2052	1080	
Tip Model									
Recommended Tip Soil Model		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	
Shear Modulus, G (ksi)		0.61	0.21	1.23	0.61	0.23	2.59	27.78	
Poisson's Ratio, v		0.25	0.30	0.30	0.25	0.20	0.45	0.35	
Jncorrected N-value (bpf)									
Jndrained Shear Strength, c _u (psf)									
24" Square PPC Pile **Bearing Failure, Q _f (kips)							1.382	1.555	

**Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

End Area (in²)

324.0

576.0

26.1

314.2

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)

SIH Elastic Silt (MH)

- WLS Weathered Limestone
- LST Limestone
- MCK Muck (PT)

SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

3. Soil resistance generated by the MSE wall fill should only be included when resisting a lateral load that causes pile deflection into the abutment fill (one direction only). Lateral resistance on the other 3 sides of the end bent piles should be assumed to be zero within the MSE wall fill.

Pile Type

18" Square PPC Pile:

24" Square PPC Pile:

20" Steel Pipe Pile (closed end):

14x89 Steel H Pile:

Project Name: GEC Project Number: FPID No:	GEC Project Number: 3520G			GSE @ Boring Lo Water Table Elev Ant. Pile Tip Eleva	ation (ft):	+37.7 +33.6 -47.0	-	j(S) :	NAVD 770104 (EB1) BR-19		
Layer No.		³ MSE Fill	1	2	3	4	5	6	7	8	9
Soil Description ID*		SND	SND	SND	SND	SND	SND	SND	SND	SND	LST
Soil Type		Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Rock
Layer Top Elevation (ft)		+70	+38	+12	+1	-5	-10	-17	-26	-31	-46
Layer Bottom Elevation (ft)		+38	+18	+1	-5	-10	-17	-26	-31	-46	-57
Layer Thickness (ft)		32	20	11	6	5	7	9	5	15	11
Average N-Value, N _{avg} (bpf) ²		10	12	4	22	2	21	4	22	60	60
Corrected N-Value, N ₆₀ (bpf)		10	9	4	20	2	19	4	20	54	54
Lateral Properties											
Recommended Lateral Soil N	lodel	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Limestone (McVay)
Total Unit Weight, y (pcf)		105	102	102	117	92	112	102	117	132	145
Angle of Internal Friction,	legrees)	30	29	29	32	26	31	29	32	36	40
Subgrade Modulus, K (pci)		60	30	30	80	15	70	30	80	125	2,000
Undrained Shear Strength, c.	, (psf)										80,000
Major Principal Strain at 50%	, ε ₅₀										0.0001
Average Undrained Shear St											80,000
Unconfined Compressive Stre	ength, q _u (psf)										160,000
Axial/Torsional Properties											
Recommended Axial Soil Mo	del		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Recommended Torsional Soi	il Model		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Shear Modulus, G (ksi)			0.52	0.23	1.07	0.13	1.03	0.23	1.07	2.59	27.78
Poisson's Ratio, v			0.20	0.20	0.30	0.10	0.28	0.20	0.30	0.45	0.35
Undrained Shear Strength, c.	, (psf)										80,000
Angle of Internal Friction, ϕ (c	legrees)		29	29	32	26	31	29	32	36	40
Youngs Modulus, E (psf)			180,000	80,000	400,000	40,000	380,000	80,000	400,000	1,080,000	10,800,000
Steel ¹ Ultimate Unit Skir	n Friction, T _f (psf)		338	127	743	39	709	127	743	1390	1080
Tip Model											
Recommended Tip Soil Mode	el		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Shear Modulus, G (ksi)			0.52	0.23	1.07	0.13	1.03	0.23	1.07	2.59	27.78
Poisson's Ratio, v			0.20	0.20	0.30	0.10	0.28	0.20	0.30	0.45	0.35
Uncorrected N-value (bpf)											
Undrained Shear Strength, c	, (psf)										
24" Steel Pipe Pile **B	earing Failure, Q _f (kips)										0.33

<u>*ID</u> <u>General Soil Description</u>

**Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force. **Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

End Area (in²)

324.0

576.0

26.1

452.4

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)

Elastic Silt (MH) SIH

WLS Weathered Limestone LST Limestone

MCK Muck (PT)

SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

3. Soil resistance generated by the MSE wall fill should only be included when resisting a lateral load that causes pile deflection into the abutment fill (one direction only).

Pile Type 18" Square PPC Pile:

24" Square PPC Pile:

24" Steel Pipe Pile (closed end):

14x89 Steel H Pile:

Lateral resistance on the other 3 sides of the end bent piles should be assumed to be zero within the MSE wall fill.

Project Name: Wekiva Pkwy Sect GEC Project Number: 3520G FPID No: 240200-2-52-0			GSE @ Boring Le Water Table Elev Ant. Pile Tip Elev	vation (ft):	+38.2 +34.5 -70.0		Elevation Datum: Foundation: Reference Boring	NAVD 770104 (P2) BR-20	
.ayer No.	1	2	3	4	5	6	7	8	9
Soil Description ID*	SND	SND	SND	SND	SND	SIL	LST	WLS	WLS
Soil Type	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Rock	Cohesionless	Cohesionless
ayer Top Elevation (ft)	+38	+29	-8	-19	-33	-43	-49	-54	-66
ayer Bottom Elevation (ft)	+29	-8	-19	-33	-43	-49	-54	-66	-92
_ayer Thickness (ft)	9	37	11	14	10	6	5	12	26
Average N-Value, N _{avg} (bpf) ²	15	9	22	5	11	60	60	19	44
Corrected N-Value, N ₆₀ (bpf)	10	8	20	5	10	54	54	17	40
ateral Properties									
Recommended Lateral Soil Model	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Limestone (McVay)	Sand (Reese)	Sand (Reese)
Total Unit Weight, γ (pcf)	107	102	117	102	107	127	145	117	127
Angle of Internal Friction,	30	29	32	29	30	32	40	37	40
Subgrade Modulus, K (pci)	60	30	80	30	60	300	2,000	200	300
Jndrained Shear Strength, c _u (psf)							80,000		
Major Principal Strain at 50%, ϵ_{50}							0.0001		
Average Undrained Shear Strength, C _{avg} (psf)							80,000		
Unconfined Compressive Strength, q _u (psf)							160,000		
Axial/Torsional Properties									
Recommended Axial Soil Model	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Recommended Torsional Soil Model	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Shear Modulus, G (ksi)	0.56	0.46	1.07	0.29	0.56	1.29	27.78	4.80	10.29
Poisson's Ratio, v	0.25	0.20	0.30	0.20	0.25	0.45	0.35	0.23	0.35
Jndrained Shear Strength, c _u (psf)							80,000		
Angle of Internal Friction,	30	29	32	29	30	32	40	37	40
Youngs Modulus, E (psf)	200,000	160,000	400,000	100,000	200,000	540,000	10,800,000	1,700,000	4,000,000
Steel ¹ Ultimate Unit Skin Friction, T _f (psf)	378	297	743	171	378	1621	1080	340	800
Tip Model									
Recommended Tip Soil Model	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Shear Modulus, G (ksi)	0.56	0.46	1.07	0.29	0.56	1.29	27.78	4.80	10.29
Poisson's Ratio, v	0.25	0.20	0.30	0.20	0.25	0.45	0.35	0.23	0.35
Incorrected N-value (bpf)									
Jndrained Shear Strength, c _u (psf)									
24" Steel Pipe Pile **Bearing Failure, Q _f (kips)									0.24

Pile Type

18" Square PPC Pile: 24" Square PPC Pile:

14x89 Steel H Pile:

24" Steel Pipe Pile (closed end):

End Area (in²)

324.0

576.0

26.1

452.4

CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)

SIH Elastic Silt (MH)

- WLS Weathered Limestone
- LST Limestone
- MCK Muck (PT)

SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

ject Name: Wekiva Pkwy Section 7A C Project Number: 3520G D No: 240200-2-52-01		GSE @ Boring Loc. (ft): Water Table Elevation (ft): Ant. Pile Tip Elevation (ft):		+36.0Elevation Datum:+34.2Foundation:-96.0Reference Boring(s):				NAVD 770104 (EB3) BR-21		
Layer No.	³ MSE Fill	1	2	3	4	5	6	7	8	9
Soil Description ID*	SND	SND	SMK	SND	SND	SND	SIL	SND	WLS	WLS
Soil Type	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless
Layer Top Elevation (ft)	+69	+36	+19	+12	-41	-53	-61	-65	-73	-86
Layer Bottom Elevation (ft)	+36	+19	+12	-41	-53	-61	-65	-73	-86	-117
Layer Thickness (ft)	33	17	7	53	12	8	4	8	13	31
Average N-Value, N _{avg} (bpf) ²	10	6	1	14	5	21	16	4	23	48
Corrected N-Value, N ₆₀ (bpf)	10	5	1	13	5	19	14	4	21	43
Lateral Properties										
Recommended Lateral Soil Model	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Total Unit Weight, γ (pcf)	105	102	72	107	102	112	112	102	117	127
Angle of Internal Friction,	30	29	10	30	29	31	22	29	38	40
Subgrade Modulus, K (pci)	60	30	15	60	30	70	100	30	200	300
Undrained Shear Strength, c _u (psf)										
Major Principal Strain at 50%, ϵ_{50}										
Average Undrained Shear Strength, C _{avg} (psf)										
Unconfined Compressive Strength, q _u (psf)										
Axial/Torsional Properties										
Recommended Axial Soil Model		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Recommended Torsional Soil Model		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Shear Modulus, G (ksi)		0.29	0.03	0.72	0.29	1.03	0.37	0.23	5.83	11.06
Poisson's Ratio, v		0.20	0.10	0.25	0.20	0.28	0.30	0.20	0.25	0.35
Undrained Shear Strength, c _u (psf)										
Angle of Internal Friction,		29	10	30	29	31	22	29	38	40
Youngs Modulus, E (psf)		100,000	10,000	260,000	100,000	380,000	140,000	80,000	2,100,000	4,300,000
Steel ¹ Ultimate Unit Skin Friction, T _f (psf)		171	19	495	171	709	712	127	420	860
Tip Model										
Recommended Tip Soil Model		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Shear Modulus, G (ksi)		0.29	0.03	0.72	0.29	1.03	0.37	0.23	5.83	11.06
Poisson's Ratio, v		0.20	0.10	0.25	0.20	0.28	0.30	0.20	0.25	0.35
Uncorrected N-value (bpf)										
Undrained Shear Strength, c _u (psf)										
24" Steel Pipe Pile **Bearing Failure, Q _f (ips)									0.26

<u>*ID</u> <u>General Soil Description</u>

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)

SIH Elastic Silt (MH)

- WLS Weathered Limestone
- LST Limestone
- MCK Muck (PT)

SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

3. Soil resistance generated by the MSE wall fill should only be included when resisting a lateral load that causes pile deflection into the abutment fill (one direction only). Lateral resistance on the other 3 sides of the end bent piles should be assumed to be zero within the MSE wall fill.

**Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

**Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

Pile Type	End Area (in ²)
18" Square PPC Pile:	324.0
24" Square PPC Pile:	576.0
14x89 Steel H Pile:	26.1
24" Steel Pipe Pile (closed end):	452.4

Project Name: Wekiva Pkwy Secti GEC Project Number: 3520G FPID No: 240200-2-52-0		GSE @ Boring Loc. (ft): Water Table Elevation (ft): Ant. Pile Tip Elevation (ft):			+36.1 +33.5 -155.0	Elevation Datum: Foundation: Reference Boring(s):			NAVD 770103 (EB1) BR-22		
Layer No.	³ MSE Fill	1	2	3	4	5	6	7	8	9	10
Soil Description ID*	SND	SND	SND	SND	WLS	WLS	SND	CLY	SND	SND	WLS
Soil Type	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesive	Cohesionless	Cohesionless	Cohesionless
Layer Top Elevation (ft)	+67	+36	+12	-48	-67	-78	-91	-128	-135	-146	-158
Layer Bottom Elevation (ft)	+36	+12	-48	-67	-78	-91	-128	-135	-146	-158	-174
Layer Thickness (ft)	30	24	60	19	11	13	37	7	11	12	16
Average N-Value, N _{avg} (bpf) ²	10	14	6	3	20	1	6	1	1	60	60
Corrected N-Value, N ₆₀ (bpf)	10	12	5	3	18	1	5	1	1	54	54
Lateral Properties											
Recommended Lateral Soil Model	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Clay (Soft < Water)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Total Unit Weight, γ (pcf)	105	107	102	97	117	97	102	102	92	132	127
Angle of Internal Friction, ϕ (degrees)	30	30	29	28	37	34	29		26	36	40
Subgrade Modulus, K (pci)	60	60	30	20	200	30	30	15	15	125	300
Undrained Shear Strength, c _u (psf)								133			
Major Principal Strain at 50%, ϵ_{50}								0.03			
Average Undrained Shear Strength, Cavg (psf)								133			
Unconfined Compressive Strength, q _u (psf)											
Axial/Torsional Properties											
Recommended Axial Soil Model		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Recommended Torsional Soil Model		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Shear Modulus, G (ksi)		0.67	0.29	0.18	5.08	0.30	0.29	0.03	0.06	2.59	13.89
Poisson's Ratio, v		0.25	0.20	0.15	0.23	0.15	0.20	0.40	0.10	0.45	0.35
Undrained Shear Strength, c _u (psf)								133			
Angle of Internal Friction,		30	29	28	37	34	29		26	36	40
Youngs Modulus, E (psf)		240,000	100,000	60,000	1,800,000	100,000	100,000		20,000	1,080,000	5,400,000
Steel ¹ Ultimate Unit Skin Friction, T _f (psf)		456	171	83	360	20	171	112	19	1390	1080
Tip Model											
Recommended Tip Soil Model		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Shear Modulus, G (ksi)		0.67	0.29	0.18	5.08	0.30	0.29	0.03	0.06	2.59	13.89
Poisson's Ratio, v		0.25	0.20	0.15	0.23	0.15	0.20	0.40	0.10	0.45	0.35
Uncorrected N-value (bpf)											
Undrained Shear Strength, c _u (psf)											
24" Steel Pipe Pile **Bearing Failure, Q _f (kips)										0.22	0.33

*ID General Soil Description

**Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force. **Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

End Area (in²)

324.0

576.0

26.1

452.4

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM) CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML) SIH Elastic Silt (MH)

WLS Weathered Limestone

LST Limestone

MCK Muck (PT)

SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

3. Soil resistance generated by the MSE wall fill should only be included when resisting a lateral load that causes pile deflection into the abutment fill (one direction only).

Pile Type 18" Square PPC Pile:

24" Square PPC Pile:

24" Steel Pipe Pile (closed end):

14x89 Steel H Pile:

Lateral resistance on the other 3 sides of the end bent piles should be assumed to be zero within the MSE wall fill.

Project Name: We GEC Project Number: FPID No:	ekiva Pkwy Section 7A 3520G 240200-2-52-01			Water Table Elevation (ft): +34.0 Foundation:			Elevation Datum: Foundation: Reference Boring		VD 03 (P2) 2-23		
Layer No.		1	2	3	4	5	6	7	8	9	10
Soil Description ID*		SND	SND	SND	SND	WLS	CLY	WLS	SND	CLY	LST
Soil Type		esionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesive	Cohesionless	Cohesionless	Cohesive	Rock
Layer Top Elevation (ft)		+36	+7	-28	-45	-78	-100	-112	-136	-150	-158
Layer Bottom Elevation (ft)		+7	-28	-45	-78	-100	-112	-136	-150	-158	-189
Layer Thickness (ft)		29	35	17	33	22	12	24	14	8	31
Average N-Value, N _{avg} (bpf) ²		10	7	14	5	23	3	39	1	3	60
Corrected N-Value, N ₆₀ (bpf)		9	6	13	5	21	3	35	1	3	54
Lateral Properties											
Recommended Lateral Soil Model	San	d (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Clay (Soft < Water)	Sand (Reese)	Sand (Reese)	Clay (Soft < Water)	Limestone (McVay)
Total Unit Weight, y (pcf)		102	102	107	102	117	107	122	92	107	145
Angle of Internal Friction,		29	29	30	29	38		39	26		40
Subgrade Modulus, K (pci)		30	30	60	30	200	30	250	15	30	2,000
Undrained Shear Strength, c _u (psf)							400			400	80,000
Major Principal Strain at 50%, ϵ_{50}							0.02			0.02	0.0001
Average Undrained Shear Strength,	C _{avg} (psf)						400			400	80,000
Unconfined Compressive Strength, q	_u (psf)										160,000
Axial/Torsional Properties											
Recommended Axial Soil Model	Dri	iven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Recommended Torsional Soil Model	Hyp	perbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Shear Modulus, G (ksi)		0.52	0.35	0.72	0.29	5.83	0.10	9.35	0.06	0.10	27.78
Poisson's Ratio, v		0.20	0.20	0.25	0.20	0.25	0.40	0.30	0.10	0.40	0.35
Undrained Shear Strength, c _u (psf)							400			400	80,000
Angle of Internal Friction,		29	29	30	29	38		39	26		40
Youngs Modulus, E (psf)	18	80,000	120,000	260,000	100,000	2,100,000		3,500,000	20,000		10,800,000
Steel ¹ Ultimate Unit Skin Friction	n, T _f (psf)	338	213	495	171	420	325	700	19	325	1080
Tip Model											
Recommended Tip Soil Model	Dri	iven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Shear Modulus, G (ksi)		0.52	0.35	0.72	0.29	5.83	0.10	9.35	0.06	0.10	27.78
Poisson's Ratio, v		0.20	0.20	0.25	0.20	0.25	0.40	0.30	0.10	0.40	0.35
Uncorrected N-value (bpf)											
Undrained Shear Strength, c_u (psf)											
24" Steel Pipe Pile **Bearing Fa	illure, Q _f (kips)										0.33

<u>*ID</u> <u>General Soil Description</u>

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)

SIH Elastic Silt (MH)

WLS Weathered Limestone

- LST Limestone
- MCK Muck (PT)
- SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

Pile Type	End Area (in ²)
18" Square PPC Pile:	324.0
24" Square PPC Pile:	576.0
14x89 Steel H Pile:	26.1
24" Steel Pipe Pile (closed end):	452.4

roject Name: Wekiva Pkwy Section 7A EC Project Number: 3520G PID No: 240200-2-52-01			GSE @ Boring Loc. (ft): Water Table Elevation (ft): Ant. Pile Tip Elevation (ft):		+35.4Elevation Datum:+33.5Foundation:-111.0Reference Boring(s):				NAVD 770103 (EB3) BR-24		
Layer No.		³ MSE Fill	1	2	3	4	5	6	7	8	9
Soil Description ID*		SND	SND	SMK	SND	SND	SND	SND	SND	SND	SND
Soil Type		Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless
Layer Top Elevation (ft)		+66	+35	+18	+10	-4	-12	-39	-47	-102	-110
Layer Bottom Elevation (ft)		+35	+18	+10	-4	-12	-39	-47	-102	-110	-132
Layer Thickness (ft)		30	17	8	14	8	27	8	55	8	22
Average N-Value, N _{avg} (bpf) ²		10	9	2	14	26	10	22	12	22	60
Corrected N-Value, N ₆₀ (bpf)		10	7	2	13	23	9	20	11	20	54
Lateral Properties											
Recommended Lateral Soil M	lodel	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Total Unit Weight, y (pcf)		107	102	77	107	117	102	117	107	117	132
Angle of Internal Friction, ϕ (d	egrees)	30	29	14	30	32	29	32	30	32	36
Subgrade Modulus, K (pci)		60	30	25	60	80	30	80	60	80	125
Undrained Shear Strength, cu	(psf)										
Major Principal Strain at 50%	ε ₅₀										
Average Undrained Shear Str											
Unconfined Compressive Stre	ength, q _u (psf)										
Axial/Torsional Properties											
Recommended Axial Soil Mo		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Recommended Torsional Soi	I Model	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Shear Modulus, G (ksi)		0.56	0.41	0.06	0.72	1.23	0.52	1.07	0.61	1.07	2.59
Poisson's Ratio, v		0.25	0.20	0.15	0.25	0.30	0.20	0.30	0.25	0.30	0.45
Undrained Shear Strength, cu	(psf)										
Angle of Internal Friction,	egrees)	30	29	14	30	32	29	32	30	32	36
Youngs Modulus, E (psf)		200,000	140,000	20,000	260,000	460,000	180,000	400,000	220,000	400,000	1,080,000
Steel ¹ Ultimate Unit Skin	Friction, T _f (psf)	378	255	39	495	838	338	743	418	743	1390
Tip Model											
Recommended Tip Soil Mode	el	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Shear Modulus, G (ksi)		0.56	0.41	0.06	0.72	1.23	0.52	1.07	0.61	1.07	2.59
Poisson's Ratio, v		0.25	0.20	0.15	0.25	0.30	0.20	0.30	0.25	0.30	0.45
Uncorrected N-value (bpf)											
Undrained Shear Strength, cu	(psf)										
24" Steel Pipe Pile **Be	aring Failure, Q _f (kips)										0.22

<u>*ID</u> <u>General Soil Description</u>

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)

SIH Elastic Silt (MH)

- WLS Weathered Limestone
- LST Limestone
- MCK Muck (PT)

SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

3. Soil resistance generated by the MSE wall fill should only be included when resisting a lateral load that causes pile deflection into the abutment fill (one direction only). Lateral resistance on the other 3 sides of the end bent piles should be assumed to be zero within the MSE wall fill.

**Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

**Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

Pile Type	End Area (in ²)
18" Square PPC Pile:	324.0
24" Square PPC Pile:	576.0
14x89 Steel H Pile:	26.1
24" Steel Pipe Pile (closed end):	452.4

Project Name:	Wekiva Pkwy Section 7A
GEC Project Number:	3520G
FPID No:	240200-2-52-01

GSE @ Boring Loc. (ft): Water Table Elevation (ft): Ant. Pile Tip Elevation (ft):

+47.0	
+42.5	
-11.0	

**Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

**Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

End Area (in²)

324.0

576.0

26.1

314.2

Elevation Datum:	NAVD				
Foundation:	770105-6 (EB1)				
Reference Boring(s):	BR-27				

Layer No.	³ MSE Fill	1	2	3
Soil Description ID*	SND	SND	SND	SND
Soil Type	Cohesionless	Cohesionless	Cohesionless	Cohesionless
Layer Top Elevation (ft)	+71	+47	+44	-4
Layer Bottom Elevation (ft)	+47	+26	-4	-43
Layer Thickness (ft)	24	21	48	39
Average N-Value, N _{avg} (bpf) ²	10	11	3	60
Corrected N-Value, N ₆₀ (bpf)	10	9	3	54
Lateral Properties				
Recommended Lateral Soil Model	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Total Unit Weight, y (pcf)	105	102	97	132
Angle of Internal Friction,	30	29	28	36
Subgrade Modulus, K (pci)	60	30	20	125
Undrained Shear Strength, c _u (psf)				
Major Principal Strain at 50%, ε ₅₀				
Average Undrained Shear Strength, C _{avg} (psf)				
Unconfined Compressive Strength, q _u (psf)				
Axial/Torsional Properties				
Recommended Axial Soil Model		Driven Pile	Driven Pile	Driven Pile
Recommended Torsional Soil Model		Hyperbolic	Hyperbolic	Hyperbolic
Shear Modulus, G (ksi)		0.52	0.18	2.59
Poisson's Ratio, v		0.20	0.15	0.45
Undrained Shear Strength, c _u (psf)				
Angle of Internal Friction,		29	28	36
Youngs Modulus, E (psf)		180,000	60,000	1,080,000
Concrete ¹ Ultimate Unit Skin Friction, T _f (psf)		342	114	2052
Tip Model				
Recommended Tip Soil Model		Driven Pile	Driven Pile	Driven Pile
Shear Modulus, G (ksi)		0.52	0.18	2.59
Poisson's Ratio, v		0.20	0.15	0.45
Uncorrected N-value (bpf)				
Undrained Shear Strength, c _u (psf)				
24" Square PPC Pile **Bearing Failure, Q _f (kips)				1,382

*ID General Soil Description

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

- SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)
- SIH Elastic Silt (MH)
- WLS Weathered Limestone
- LST Limestone
- MCK Muck (PT)
- SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

3. Soil resistance generated by the MSE wall fill should only be included when resisting a lateral load that causes pile deflection into the abutment fill (one direction only). Lateral resistance on the other 3 sides of the end bent piles should be assumed to be zero within the MSE wall fill.

Pile Type

18" Square PPC Pile:

24" Square PPC Pile:

20" Steel Pipe Pile (closed end):

14x89 Steel H Pile:

Project Name:	Wekiva Pkwy Section 7A
GEC Project Number:	3520G
FPID No:	240200-2-52-01

GSE @ Boring Loc. (ft): Water Table Elevation (ft): Ant. Pile Tip Elevation (ft):

+50.0	
+42.5	
-10.0	

Elevation Datum:	NAVD
Foundation:	770105-6 (P2)
Reference Boring(s):	BR-28

		-		r
Layer No.	1	2	3	4
Soil Description ID*	SND	SND	SND	SND
Soil Type	Cohesionless	Cohesionless	Cohesionless	Cohesionless
Layer Top Elevation (ft)	+45	+26	-1	-7
Layer Bottom Elevation (ft)	+26	-1	-7	-46
Layer Thickness (ft)	19	27	6	39
Average N-Value, N _{avg} (bpf) ²	16	3	35	60
Corrected N-Value, N ₆₀ (bpf)	14	3	32	54
Lateral Properties				
Recommended Lateral Soil Model	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Total Unit Weight, y (pcf)	107	97	122	132
Angle of Internal Friction, ϕ (degrees)	30	28	33	36
Subgrade Modulus, K (pci)	60	20	90	125
Undrained Shear Strength, c _u (psf)				
Major Principal Strain at 50%, ϵ_{50}				
Average Undrained Shear Strength, Cavy (psf)				
Unconfined Compressive Strength, q _u (psf)				
Axial/Torsional Properties				
Recommended Axial Soil Model	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Recommended Torsional Soil Model	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Shear Modulus, G (ksi)	0.78	0.18	1.65	2.59
Poisson's Ratio, v	0.25	0.15	0.35	0.45
Undrained Shear Strength, c _u (psf)				
Angle of Internal Friction, ϕ (degrees)	30	28	33	36
Youngs Modulus, E (psf)	280,000	60,000	640,000	1,080,000
Concrete ¹ Ultimate Unit Skin Friction, T _f (psf)	532	114	1216	2052
Tip Model				
Recommended Tip Soil Model	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Shear Modulus, G (ksi)	0.78	0.18	1.65	2.59
Poisson's Ratio, v	0.25	0.15	0.35	0.45
Uncorrected N-value (bpf)				
Undrained Shear Strength, c _u (psf)				
24" Square PPC Pile **Bearing Failure, Q _f (kips)				1,382

<u>*ID</u> <u>General Soil Description</u>

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

- SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)
- SIH Elastic Silt (MH)
- WLS Weathered Limestone
- LST Limestone
- MCK Muck (PT)
- SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

Pile Type	<u>End Area (in²)</u>
18" Square PPC Pile:	324.0
24" Square PPC Pile:	576.0
14x89 Steel H Pile:	26 1
20" Steel Pipe Pile (closed end):	314.2

Project Name: Wekiva Pkwy Section GEC Project Number: 3520G				GSE @ Boring L Water Table Elev		+47.0		Elevation Datum: Foundation:	NAVD 770105-6 (EB3)
FPID No: 240200-2-52-)1		Ant. Pile Tip Elev	vation (ft):	-23.0	-	Reference Boring(s):	BR-26
Layer No.		³ MSE Fill	1	2	3	4	5	6	
Soil Description ID*		SND	SND	SND	SIL	SND	SND	SND	
Soil Type		Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	
Layer Top Elevation (ft)		+69	+47	+44	+6	0	-4	-10	
Layer Bottom Elevation (ft)		+47	+20	+6	0	-4	-10	-40	
Layer Thickness (ft)		22	27	38	6	4	6	30	
Average N-Value, N _{avg} (bpf) ²		10	13	2	9	60	24	60	
Corrected N-Value, N ₆₀ (bpf)		10	11	2	8	54	22	54	
_ateral Properties									
Recommended Lateral Soil Model		Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	
Total Unit Weight, ¥ (pcf)		105	107	92	112	132	117	132	
Angle of Internal Friction, ϕ (degree	es)	30	30	26	22	36	32	36	
Subgrade Modulus, K (pci)		60	60	15	100	125	80	125	
Undrained Shear Strength, c _u (psf)									
Major Principal Strain at 50%, ϵ_{50}									
Average Undrained Shear Strength	n, C _{avg} (psf)								
Unconfined Compressive Strength	, q _u (psf)								
Axial/Torsional Properties									
Recommended Axial Soil Model			Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	
Recommended Torsional Soil Mod	lel		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	
Shear Modulus, G (ksi)			0.61	0.13	0.21	2.59	1.18	2.59	
Poisson's Ratio, v			0.25	0.10	0.30	0.45	0.30	0.45	
Undrained Shear Strength, c _u (psf)									
Angle of Internal Friction, φ (degree	es)		30	26	22	36	32	36	
Youngs Modulus, E (psf)			220,000	40,000	80,000	1,080,000	440,000	1,080,000	
Concrete ¹ Ultimate Unit Skin Frict	ion, T _f (psf)		418	76	712	2052	836	2052	
Tip Model									
Recommended Tip Soil Model			Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	
Shear Modulus, G (ksi)			0.61	0.13	0.21	2.59	1.18	2.59	
Poisson's Ratio, v			0.25	0.10	0.30	0.45	0.30	0.45	
Uncorrected N-value (bpf)									
Undrained Shear Strength, cu (psf)									
24" Square PPC Pile **Bearing	Failure, Q _f (kips)							1,382	
24" Square PPC Pile **Bearing *ID General Soil Description	Failure, Q _f (kips)				 area of chosen pile			,	

<u>*ID</u> <u>General Soil Description</u>

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)

SIH Elastic Silt (MH)

- WLS Weathered Limestone
- LST Limestone
- MCK Muck (PT)
- SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

3. Soil resistance generated by the MSE wall fill should only be included when resisting a lateral load that causes pile deflection into the abutment fill (one direction only). Lateral resistance on the other 3 sides of the end bent piles should be assumed to be zero within the MSE wall fill.

*Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

**Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

Pile Type	End Area (in ²)
18" Square PPC Pile:	324.0
24" Square PPC Pile:	576.0
14x89 Steel H Pile:	26.1
20" Steel Pipe Pile (closed end):	314.2

Project Name: Wekiva Pkwy Secti GEC Project Number: 3520G	on 7A		GSE @ Boring Lo Water Table Elev		+62.0 +56.5		NAVD 770107-110 (EB1)		
PID No: 240200-2-52-0	1		Ant. Pile Tip Eleva	ation (ft):	-12.0		Reference Boring	(s):	BR-30B
Layer No.	³ MSE Fill	1	2	3	4	5	6	7	
Soil Description ID*	SND	SND	SND	SIH	SND	SND	SND	SND	
Soil Type	Cohesionless	Cohesionless	Cohesionless	Cohesive	Cohesionless	Cohesionless	Cohesionless	Cohesionless	
Layer Top Elevation (ft)	+79	+62	+47	+26	+10	+3	-1	-17	
Layer Bottom Elevation (ft)	+62	+47	+26	+10	+3	-1	-17	-53	
Layer Thickness (ft)	17	15	21	16	7	4	16	36	
Average N-Value, N _{avg} (bpf) ²	10	9	18	5	46	6	29	60	
Corrected N-Value, N ₆₀ (bpf)	10	7	16	5	41	5	26	54	
ateral Properties									
Recommended Lateral Soil Model	Sand (Reese)	Sand (Reese)	Sand (Reese)	Clay (Stiff < Water)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	
Total Unit Weight, γ (pcf)	105	102	112	107	127	102	117	132	
Angle of Internal Friction, ϕ (degrees)	30	29	31		34	29	32	36	
Subgrade Modulus, K (pci)	60	30	70	100	110	30	80	125	
Undrained Shear Strength, c _u (psf)				375					
Major Principal Strain at 50%, $arepsilon_{50}$				0.007					
Average Undrained Shear Strength, C _{avg} (psf)				375					
Unconfined Compressive Strength, q _u (psf)									
Axial/Torsional Properties									
Recommended Axial Soil Model		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	
Recommended Torsional Soil Model		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	
Shear Modulus, G (ksi)		0.41	0.87	0.10	2.03	0.29	1.39	2.59	
Poisson's Ratio, ν		0.20	0.28	0.30	0.40	0.20	0.30	0.45	
Undrained Shear Strength, c _u (psf)				375					
Angle of Internal Friction, φ (degrees)		29	31		34	29	32	36	
Youngs Modulus, E (psf)		140,000	320,000		820,000	100,000	520,000	1,080,000	
Concrete ¹ Ultimate Unit Skin Friction, T _f (psf)		266	608	458	1558	190	988	2052	
Tip Model									
Recommended Tip Soil Model		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	
Shear Modulus, G (ksi)		0.41	0.87	0.10	2.03	0.29	1.39	2.59	
Poisson's Ratio, ν		0.20	0.28	0.30	0.40	0.20	0.30	0.45	
Uncorrected N-value (bpf)									
Undrained Shear Strength, c _u (psf)									
24" Square PPC Pile **Bearing Failure, Q _f (kips)							666	1,382	

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)

SIH Elastic Silt (MH)

WLS Weathered Limestone

LST Limestone

MCK Muck (PT)

SMK Sandy Muck (PT)

<u>Pile Type</u>	<u>End Area (in²)</u>
18" Square PPC Pile:	324.0
24" Square PPC Pile:	576.0
14x89 Steel H Pile:	26.1
20" Steel Pipe Pile (closed end):	314.2

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

3. Soil resistance generated by the MSE wall fill should only be included when resisting a lateral load that causes pile deflection into the abutment fill (one direction only). Lateral resistance on the other 3 sides of the end bent piles should be assumed to be zero within the MSE wall fill.

GEC Project Number: FPID No:	on 7A 11		GSE @ Boring Lo Water Table Elev Ant. Pile Tip Eleva	ation (ft):	+63.0 +58.5 -19.0		Elevation Datum: Foundation: Reference Boring	NA\ 770107-1 BR-3		
Layer No.		³ MSE Fill	1	2	3	4	5	6	7	8
Soil Description ID*		SND	SND	SND	SND	CLY	SND	WLS	SIL	SND
Soil Type		Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesive	Cohesionless	Cohesionless	Cohesionless	Cohesionless
Layer Top Elevation (ft)		+78	+63	+47	+40	+29	+12	+2	-5	-15
Layer Bottom Elevation (ft)		+63	+47	+40	+29	+12	+2	-5	-15	-48
Layer Thickness (ft)		15	16	7	11	17	10	7	10	33
Average N-Value, N _{avg} (bpf)	2	10	10	26	13	7	47	22	28	60
Corrected N-Value, N ₆₀ (bpf	f)	10	8	22	12	6	42	20	25	54
Lateral Properties										
Recommended Lateral Soil	Model	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Clay (Stiff < Water)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Total Unit Weight, γ (pcf)		105	102	117	107	112	127	117	117	132
Angle of Internal Friction, ϕ ((degrees)	30	29	32	30		34	38	24	36
Subgrade Modulus, K (pci)		60	30	80	60	100	110	200	200	125
Undrained Shear Strength,	c _u (psf)					800				
Major Principal Strain at 50%	%, ε ₅₀					0.01				
Average Undrained Shear S	Strength, C _{avg} (psf)					800				
Unconfined Compressive S	trength, q _u (psf)									
Axial/Torsional Properties	•									
Recommended Axial Soil M	odel		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Recommended Torsional S	oil Model		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Shear Modulus, G (ksi)			0.46	1.18	0.67	0.19	2.08	5.56	0.64	2.59
Poisson's Ratio, ν			0.20	0.30	0.25	0.45	0.40	0.25	0.35	0.45
Undrained Shear Strength,	c _u (psf)					800				
Angle of Internal Friction, ϕ ((degrees)		29	32	30		34	38	24	36
Youngs Modulus, E (psf)			160,000	440,000	240,000		840,000	2,000,000	250,000	1,080,000
Concrete ¹ Ultimate Unit Sk	in Friction, T _f (psf)		304	836	456	623	1596	400	1855	2052
Tip Model										
Recommended Tip Soil Mod	del		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Shear Modulus, G (ksi)			0.46	1.18	0.67	0.19	2.08	5.56	0.64	2.59
Poisson's Ratio, ν			0.20	0.30	0.25	0.45	0.40	0.25	0.35	0.45
Uncorrected N-value (bpf)										
Undrained Shear Strength,	÷ (,)									
24" Square PPC Pile **	Bearing Failure, Q _f (kips)									1,382

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)

SIH Elastic Silt (MH)

WLS Weathered Limestone

LST Limestone

MCK Muck (PT)

SMK Sandy Muck (PT)

**Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

<u>Pile Type</u>	<u>End Area (in²)</u>
18" Square PPC Pile:	324.0
24" Square PPC Pile:	576.0
14x89 Steel H Pile:	26.1
20" Steel Pipe Pile (closed end):	314.2

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

3. Soil resistance generated by the MSE wall fill should only be included when resisting a lateral load that causes pile deflection into the abutment fill (one direction only). Lateral resistance on the other 3 sides of the end bent piles should be assumed to be zero within the MSE wall fill.

IAVD

770107-110 (EB2) BR-31B

Project Name: Wekiva Pkwy Sect GEC Project Number: 3520G FPID No: 240200-2-52-0	GSE @ Boring Loc. (ft): Water Table Elevation (ft): Ant. Pile Tip Elevation (ft):			+72.4Elevation Datum:+66.4Foundation:-19.0Reference Boring(s):				NAVD 770108-9 (EB 1) BR-32			
Layer No.	³ MSE Fill	1	2	3	4	5	6	7	8	9	10
Soil Description ID*	SND	SND	SND	SND	SND	CLY	SND	CLY	SND	CLY	SND
Soil Type	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesive	Cohesionless	Cohesive	Cohesionless	Cohesive	Cohesionless
Layer Top Elevation (ft)	+91	+72	+58	+44	+36	+31	+27	+11	+4	-9	-12
Layer Bottom Elevation (ft)	+72	+58	+44	+36	+31	+27	+11	+4	-9	-12	-43
Layer Thickness (ft)	19	14	14	8	5	4	16	7	13	3	31
Average N-Value, N _{avg} (bpf) ²	10	2	7	16	30	4	15	7	25	47	60
Corrected N-Value, N ₆₀ (bpf)	10	2	6	14	27	4	14	6	23	42	54
Lateral Properties											
Recommended Lateral Soil Model	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Clay (Stiff < Water)	Sand (Reese)	Clay (Stiff < Water)	Sand (Reese)	Clay (Stiff < Water)	Sand (Reese)
Total Unit Weight, γ (pcf)	105	92	102	107	117	112	107	112	117	122	132
Angle of Internal Friction,	30	26	29	30	32		30		32		36
Subgrade Modulus, K (pci)	60	15	30	60	80	100	60	100	80	2,000	125
Undrained Shear Strength, c _u (psf)						533		800		5,600	
Major Principal Strain at 50%, ε ₅₀						0.01		0.01		0.004	
Average Undrained Shear Strength, Cavg (psf)						533		800		5,600	
Unconfined Compressive Strength, q _u (psf)											
Axial/Torsional Properties											
Recommended Axial Soil Model	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Recommended Torsional Soil Model		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Shear Modulus, G (ksi)		0.13	0.35	0.78	1.44	0.13	0.78	0.19	1.23	1.30	2.59
Poisson's Ratio, v		0.10	0.20	0.25	0.30	0.45	0.25	0.45	0.30	0.50	0.45
Undrained Shear Strength, c _u (psf)						533		800		5,600	
Angle of Internal Friction,		26	29	30	32		30		32		36
Youngs Modulus, E (psf)		40,000	120,000	280,000	540,000		280,000		460,000		1,080,000
Concrete ¹ Ultimate Unit Skin Friction, T _f (psf)		76	228	532	1026	423	532	623	874	2851	2052
Tip Model											
Recommended Tip Soil Model		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Shear Modulus, G (ksi)		0.13	0.35	0.78	1.44	0.13	0.78	0.19	1.23	1.30	2.59
Poisson's Ratio, v		0.10	0.20	0.25	0.30	0.45	0.25	0.45	0.30	0.50	0.45
Uncorrected N-value (bpf)											
Undrained Shear Strength, c _u (psf)											
24" Square PPC Pile **Bearing Failure, Q _f (kips)											1,382

*ID General Soil Description **Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force. **Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

End Area (in²)

324.0

576.0

26.1

314.2

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

Clayey Fine Sand (SC) to Sandy Silt to Silt (ML) SIL

Elastic Silt (MH) SIH

WLS Weathered Limestone LST Limestone

MCK Muck (PT)

SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

3. Soil resistance generated by the MSE wall fill should only be included when resisting a lateral load that causes pile deflection into the abutment fill (one direction only).

Pile Type

18" Square PPC Pile:

24" Square PPC Pile:

20" Steel Pipe Pile (closed end):

14x89 Steel H Pile:

Lateral resistance on the other 3 sides of the end bent piles should be assumed to be zero within the MSE wall fill.

Project Name: Wekiva Pkwy Sect GEC Project Number: 3520G FPID No: 240200-2-52-0				GSE @ Boring L Water Table Elev Ant. Pile Tip Elev	vation (ft):	+71.5 +65.5 -21.0	NAVD 770109 (PIERS 2-4)			
FID NO	240200-2-32-0)		Ant. File Tip Elev	auon (it).	-21.0	g(s):	BR-35		
ayer No.		1	2	3	4	5	6	7	8	9
oil Description ID*		SND	SND	SND	SND	CLY	SND	SND	SIL	SND
Soil Type		Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesive	Cohesionless	Cohesionless	Cohesionless	Cohesionless
ayer Top Elevation (ft)		+66	+62	+35	+15	0	-2	-10	-15	-22
ayer Bottom Elevation (ft)		+62	+35	+15	0	-2	-10	-15	-22	-49
ayer Thickness (ft)		4	27	20	15	2	8	5	7	27
verage N-Value, N _{avg} (bpf) ²	2	3	10	13	4	3	6	60	37	60
orrected N-Value, N ₆₀ (bpf))	2	9	12	4	3	5	54	33	54
ateral Properties										
Recommended Lateral Soil	Model	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Clay (Soft < Water)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Γotal Unit Weight, γ (pcf)		92	102	107	102	107	102	132	122	132
Angle of Internal Friction, ϕ ((degrees)	26	29	30	29		29	36	28	36
Subgrade Modulus, K (pci)		15	30	60	30	30	30	125	250	125
Indrained Shear Strength, o	c _u (psf)					400				
ajor Principal Strain at 50%	%, ε ₅₀					0.02				
verage Undrained Shear S	strength, C _{avg} (psf)					400				
Jnconfined Compressive St										
Axial/Torsional Properties										
Recommended Axial Soil Mo	odel	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Recommended Torsional Sc	oil Model	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Shear Modulus, G (ksi)		0.13	0.52	0.67	0.23	0.10	0.29	2.59	0.82	2.59
Poisson's Ratio, v		0.10	0.20	0.25	0.20	0.40	0.20	0.45	0.40	0.45
Jndrained Shear Strength, c	c _u (psf)					400				
Angle of Internal Friction, ((degrees)	26	29	30	29		29	36	28	36
oungs Modulus, E (psf)	u ,	40,000	180,000	240,000	80,000		100,000	1,080,000	330,000	1,080,000
Concrete ¹ Ultimate Unit Ski	n Friction, T _f (psf)	76	342	456	152	320	190	2052	2218	2052
ip Model										
Recommended Tip Soil Mod	lel	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Shear Modulus, G (ksi)		0.13	0.52	0.67	0.23	0.10	0.29	2.59	0.82	2.59
oisson's Ratio, v		0.10	0.20	0.25	0.20	0.40	0.20	0.45	0.40	0.45
Incorrected N-value (bpf)										
Indrained Shear Strength, c	c _u (psf)									
	earing Failure, Q _f (kips)								422	1,382

Pile Type

18" Square PPC Pile:

24" Square PPC Pile:

20" Steel Pipe Pile (closed end):

14x89 Steel H Pile:

End Area (in²)

324.0

576.0

26.1

314.2

CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)

SIH Elastic Silt (MH)

- WLS Weathered Limestone
- LST Limestone
- MCK Muck (PT)
- SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

Project Name: GEC Project Number: FPID No:	Project Number: 3520G		GSE @ Boring Loc. (ft): Water Table Elevation (ft): Ant. Pile Tip Elevation (ft):		+73.7Elevation Datum:+66.7Foundation:-25.0Reference Boring(s):		NAVD 770108 (PIERS 2-4) BR-39			
Layer No.		1	2	3	4	5	6	7	8	
Soil Description ID*		SND	SND	SIL	SND	SIL	SND	SIL	SND	
Soil Type		Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	
Layer Top Elevation (ft)		+66	+56	+22	+17	+5	-13	-20	-26	
_ayer Bottom Elevation (ft)		+56	+22	+17	+5	-13	-20	-26	-52	
_ayer Thickness (ft)		10	34	5	12	18	7	6	26	
Average N-Value, N _{avg} (bpf) ²		4	15	2	6	17	31	41	60	
Corrected N-Value, N ₆₀ (bpf)		3	14	2	5	15	28	37	54	
ateral Properties										
Recommended Lateral Soil M	odel	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	
Total Unit Weight, ɣ (pcf)		97	107	102	102	117	117	122	132	
Angle of Internal Friction, ϕ (de	egrees)	28	30	14	29	24	32	28	36	
Subgrade Modulus, K (pci)		20	60	50	30	200	80	250	125	
Jndrained Shear Strength, c _u	(psf)									
Major Principal Strain at 50%,	ε 50									
Average Undrained Shear Stre	ength, C _{avg} (psf)									
Unconfined Compressive Stre	ngth, q _u (psf)									
Axial/Torsional Properties										
Recommended Axial Soil Mod	el	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	
Recommended Torsional Soil	Model	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	
Shear Modulus, G (ksi)		0.18	0.78	0.06	0.29	0.39	1.50	0.92	2.59	
Poisson's Ratio, v		0.15	0.25	0.20	0.20	0.35	0.30	0.40	0.45	
Jndrained Shear Strength, c _u	(psf)									
Angle of Internal Friction, ϕ (defined to the second sec	egrees)	28	30	14	29	24	32	28	36	
Youngs Modulus, E (psf)		60,000	280,000	20,000	100,000	150,000	560,000	370,000	1,080,000	
Concrete ¹ Ultimate Unit Skin	Friction, T _f (psf)	114	532	189	190	1244	1064	2357	2052	
Fip Model										
Recommended Tip Soil Mode		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	
Shear Modulus, G (ksi)		0.18	0.78	0.06	0.29	0.39	1.50	0.92	2.59	
Poisson's Ratio, v		0.15	0.25	0.20	0.20	0.35	0.30	0.40	0.45	
Incorrected N-value (bpf)										
Jndrained Shear Strength, c _u	(psf)									
24" Square PPC Pile **Bea	ring Failure, Q _f (kips)							474	1.382	

Pile Type

18" Square PPC Pile:

24" Square PPC Pile:

20" Steel Pipe Pile (closed end):

14x89 Steel H Pile:

**Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force.

End Area (in²)

324.0

576.0

26.1

314.2

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM)

CLY Fat Clay (CH)

SIL Clayey Fine Sand (SC) to Sandy Silt to Silt (ML)

SIH Elastic Silt (MH)

- WLS Weathered Limestone
- LST Limestone
- MCK Muck (PT)
- SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

Project Name: Wekiva Pkwy Sect GEC Project Number: 3520G FPID No:	ion 7A		GSE @ Boring Lo Water Table Elev Ant. Pile Tip Eleva	ation (ft):	+74.0 +67.5 -21.0		Elevation Datum: Foundation: Reference Boring	(s):	NA 770108- BR		
Layer No.	³ MSE Fill	1	2	3	4	5	6	7	8	9	10
Soil Description ID*	SND	SND	SND	SND	SND	SND	SIH	SND	SIL	SIL	SIL
Soil Type	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesionless	Cohesive	Cohesionless	Cohesionless	Cohesionless	Cohesionless
Layer Top Elevation (ft)	+91	+74	+55	+42	+35	+27	+12	0	-10	-15	-23
Layer Bottom Elevation (ft)	+74	+55	+42	+35	+27	+12	0	-10	-15	-23	-47
Layer Thickness (ft)	17	19	13	7	8	15	12	10	5	8	24
Average N-Value, N _{avg} (bpf) ²	10	3	6	19	3	20	7	19	60	32	60
Corrected N-Value, N ₆₀ (bpf)	10	2	5	17	3	18	6	17	54	29	54
Lateral Properties											
Recommended Lateral Soil Model	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Clay (Stiff < Water)	Sand (Reese)	Sand (Reese)	Sand (Reese)	Sand (Reese)
Total Unit Weight, v (pcf)	105	92	102	112	97	112	107	112	127	117	127
Angle of Internal Friction,	30	26	29	31	28	31		31	32	24	32
Subgrade Modulus, K (pci)	60	15	30	70	20	70	100	70	300	200	300
Undrained Shear Strength, c _u (psf)							450				
Major Principal Strain at 50%, ε ₅₀							0.007				
Average Undrained Shear Strength, Cavg (psf)							450				
Unconfined Compressive Strength, q_u (psf)											
Axial/Torsional Properties											
Recommended Axial Soil Model	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Recommended Torsional Soil Model		Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic	Hyperbolic
Shear Modulus, G (ksi)		0.13	0.29	0.92	0.18	0.98	0.12	0.92	1.29	0.75	1.29
Poisson's Ratio, v		0.10	0.20	0.28	0.15	0.28	0.30	0.28	0.45	0.35	0.45
Undrained Shear Strength, c _u (psf)							450				
Angle of Internal Friction,		26	29	31	28	31		31	32	24	32
Youngs Modulus, E (psf)		40,000	100,000	340,000	60,000	360,000		340,000	540,000	290,000	540,000
Concrete ¹ Ultimate Unit Skin Friction, T _f (psf)		76	190	646	114	684	545	646	2639	2050	2639
Tip Model											
Recommended Tip Soil Model		Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile	Driven Pile
Shear Modulus, G (ksi)		0.13	0.29	0.92	0.18	0.98	0.12	0.92	1.29	0.75	1.29
Poisson's Ratio, v		0.10	0.20	0.28	0.15	0.28	0.30	0.28	0.45	0.35	0.45
Uncorrected N-value (bpf)											
Undrained Shear Strength, c _u (psf)											
24" Square PPC Pile **Bearing Failure, Q _f (kips)										371	691

End Area (in²)

324.0

576.0

26.1

314.2

*ID General Soil Description **Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force. **Multiplied by end area of chosen pile type to obtain Ultimate End Bearing as a force. Pile Type

18" Square PPC Pile:

24" Square PPC Pile:

20" Steel Pipe Pile (closed end):

14x89 Steel H Pile:

SND Fine Sand to Fine Sand with Silt to Silty Fine Sand (SP, SP-SM, SM) CLY Fat Clay (CH)

Clayey Fine Sand (SC) to Sandy Silt to Silt (ML) SIL Elastic Silt (MH)

SIH WLS Weathered Limestone

LST Limestone

MCK Muck (PT)

SMK Sandy Muck (PT)

Notes

1. For the input of vertical failure shear stress and torsional shear stress the ultimate unit skin friction for a pile can be used.

2. Average N-values greater than 60 truncated to a maximum N-value of 60 for calculations.

3. Soil resistance generated by the MSE wall fill should only be included when resisting a lateral load that causes pile deflection into the abutment fill (one direction only).

Lateral resistance on the other 3 sides of the end bent piles should be assumed to be zero within the MSE wall fill.

SAMPLE FBDEEP ANALYSES

	ridge Software Ins I Pile Analysis (FB	stitute	INPPC_PILES.out.txt Date: June 10, 2014 2.04) Time: 10:43:02
	information:		
Project Job nam Enginee	: number: 3520G ne: WEKIVA 7A	allock\Des	sktop\FB-Deep\BR-7_PPC_PILES.spc
-	Information:		
Analysis	Туре: SPT		
Soil Info			
Boring	date: 3-31-14, number: Offset	Boring Nu	umber: BR-7
Ground	Elevation: 54.700	(ft)	
Hammer	type: Automatic Ha	ammer, Cor	rrection factor = 1.24
ID	Depth No. o (ft) (Blow	f Blows ws/ft)	Soil Туре
 1 2	0.00 2.00	5.00 5.00	3- Clean sand 3- Clean sand
2 3 4 5 6	4.00 6.00	5.00 5.00	3- Clean sand 3- Clean sand
5 6	8.00 11.40	0.00	3- Clean sand 2- Clay and silty sand
7 8	11.50 14.00	13.00 11.00	3- Clean sand 3- Clean sand
9 10	16.50 19.00	$\begin{array}{c} 10.00 \\ 11.00 \end{array}$	3- Clean sand 3- Clean sand
11 12	21.50 24.00		3- Clean sand 3- Clean sand
13 14	26.40 26.50	0.00 17.00	2- Clay and silty sand 3- Clean sand
15 16	29.00 31.50	$17.00 \\ 15.00$	3- Clean sand 3- Clean sand
17 18	34.00 36.50	16.00 15.00	3- Clean sand 3- Clean sand
19 20	39.00 41.40	14.00 0.00	3- Clean sand 2- Clay and silty sand
21 22	41.50 44.00	$\begin{array}{c} 12.00\\ 11.00\end{array}$	3- Clean sand 3- Clean sand
23 24	46.50 49.00	$12.00 \\ 16.00$	3- Clean sand 3- Clean sand
25 26	51.50 53.90	0.00	3- Clean sand 2- Clay and silty sand
27 28	54.00 56.40	$41.00 \\ 0.00$	3- Clean sand 2- Clay and silty sand
29 30	56.50 59.00	26.00 32.00	3- Clean sand 3- Clean sand
31 32	61.50 64.00	30.00 33.00	3- Clean sand 3- Clean sand
			Page 1

Blowcount Average Per Soil Layer

Layer Num.	Starting Elevation (ft)			Average Blowcount (Blows/ft)	Soil Type
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Shelly		$\begin{array}{r} 43.30\\ 43.20\\ 28.30\\ 28.20\\ 13.30\\ 13.20\\ 0.80\\ 0.70\\ -1.70\\ -1.80\\ -16.70\\ -16.80\\ -25.30\\ -31.30\\ -36.70\end{array}$	$\begin{array}{c} 0.10\\ 14.90\\ 0.10\\ 14.90\\ 0.10\\ 12.40\\ 0.10\\ 2.40\\ 0.10\\ 14.90\\ 0.10\\ 14.90\\ 0.10\\ 8.50\\ 6.00\\ 5.40 \end{array}$	$\begin{array}{c} 5.30\\ 0.00\\ 11.34\\ 0.00\\ 15.68\\ 0.00\\ 12.22\\ 0.00\\ 41.00\\ 0.00\\ 32.32\\ 0.00\\ 44.06\\ 11.67\\ 11.44 \end{array}$	3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand 1-Plastic Clay 4-Limestone, Very
16 17 Shelly	-36.70 -36.80	-36.80 -60.80		0.00 75.29	3-Clean Sand 4-Limestone, Very
18 18	-60.80	-60.80	0.00	0.00	5 -

Driven Pile Data:

Pile unit weight = 150.00(pcf), Section Type: Square

Pile Geometry:

width Length Tip Elev.

(in)	(ft)	BR-7_24 (ft)
$\begin{array}{c} 24.00\\ 24$	5.00 7.00 9.00 11.00 13.00 15.00 17.00 23.00 25.00 27.00 29.00 31.00 33.00 35.00 37.00 39.00 41.00 43.00 45.00 47.00 49.00 51.00 57.00 59.00 61.00 63.00 65.00 67.00 69.00 71.00 73.00 75.00 77.00 79.00 81.00 83.00 83.00 85.00 87.00 99.00 100 93.00 91.00 93.00 91.00 93.00 91.00 93.00 91.00 103.00 103.00 105.00 107.00 103.00 103.00 103.00 115.00 117.00 119.00	$\begin{array}{c} 49.70\\ 47.70\\ 45.70\\ 43.70\\ 43.70\\ 41.70\\ 39.70\\ 37.70\\ 35.70\\ 35.70\\ 29.70\\ 25.70\\ 23.70\\ 21.70\\ 19.70\\ 17.70\\ 15.70\\ 13.70\\ 11.70\\ 9.70\\ 7.70\\ 5.70\\ 3.70\\ 1.70\\ -0.30\\ -4.30\\ -6.30\\ -8.30\\ -10.30\\ -12.30\\ -14.30\\ -16.30\\ -22.30\\ -24.30\\ -26.30\\ -28.30\\ -36.30\\ -38.30\\ -36.30\\ -38.30\\ -36.30\\ -38.30\\ -36.30\\ -36.30\\ -36.30\\ -36.30\\ -36.30\\ -36.30\\ -36.30\\ -36.30\\ -52.30\\ -54.30\\ -56.30\\ -56.30\\ -58.30\\ -56.30\\ -58.30\\ -60.30\\ -58.30\\ -60.30\\ -52.30\\ -54.30\\ -56.30\\ $

Driven Pile Capacity:

Test Pile Length	Pile Width	Ultimate Side Friction	Mobilized End Bearing	Estimated Davisson Capacity	Allowable Pile Capacity	Ultimate Pile Capacity
Pile		Side	End	Davisson	Pile	Pile
105.00 107.00 109.00 111.00	24.0 24.0 24.0 24.0	360.20 369.17 ********* 0.00	257.17 274.25 Not enough 0.00	617.37 643.42 soil data * 0.00 Page 4	308.68 321.71 ***** 0.00	$1131.70 \\ 1191.93 \\ 0.00$

			BR-7_24INP	PC_PILES.out	t.txt	
113.00	24.0	0.00	0.00	0.00	0.00	0.00
115.00	24.0	0.00	0.00	0.00	0.00	0.00
117.00	24.0	0.00	0.00	0.00	0.00	0.00
119.00	24.0	0.00	0.00	0.00	0.00	0.00

- 1. MOBILIZED END BEARING IS 1/3 OF THE ORIGINAL RB-121 VALUES.
- 2. DAVISSON PILE CAPACITY IS AN ESTIMATE BASED ON FAILURE CRITERIA, AND EQUALS ULTIMATE SIDE FRICTION PLUS MOBILIZED END BEARING.
- 3. ALLOWABLE PILE CAPACITY IS 1/2 THE DAVISSON PILE CAPACITY.
- 4. ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 3 x THE MOBILIZED END BEARING. EXCEPTION: FOR H-PILES TIPPED IN SAND OR LIMESTONE, THE ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 2 x THE MOBILIZED END BEARING.

BR-13_24INPPC_PILES.out.txt Florida Bridge Software Institute Date: June 17, 2014 Shaft and Pile Analysis (FB-Deep v.2.04) Time: 15:42:31 General Information: _____ Input file: C:\Users\cgballock\Desktop\FB-Deep\BR-13_PPC_PILES.spc Project number: 3520G Job name: WEKIVA 7A Engineer: CGB Units: English Analysis Information: Analysis Type: SPT Soil Information: Boring date: 4-14-14, Boring Number: BR-13 Station number: Offset: Ground Elevation: 55.200(ft) Hammer type: Automatic Hammer, Correction factor = 1.24No. of Blows ID Depth Soil Type (ft) (Blows/ft) 2.00 1 0.00 3- Clean sand 3- Clean sand 3- Clean sand 2 2.00 3 4.00 2.00 2.00 456789 6.00 3- Clean sand 2- Clay and silty sand 7.90 0.00 8.00 16.00 3- Clean sand 11.50 21.00 3- Clean sand 14.00 13.00 3- Clean sand 14.00 13.00 2- Clay and silty sand 3- Clean sand 16.50 1Ō 19.00 21.50 3- Clean sand 11 9.00 12 24.00 10.00 3- Clean sand 13 26.50 9.00 3- Clean sand 14 7.00 3- Clean sand 29.00 15 31.40 0.00 2- Clay and silty sand 3- Clean sand 16 31.50 14.00 17 34.00 14.00 3- Clean sand $15.00 \\ 12.00$ 3- Clean sand 18 36.50 3- Clean sand 19 39.00 22.00 3- Clean sand 20 41.50 44.00 3- Clean sand 21 8.00 22 46.50 17.00 3- Clean sand $\bar{2}\bar{3}$ 48.90 0.00 2- Clay and silty sand 24 49.00 3- Clean sand 3.00 25 3.00 3- Clean sand 51.50 3- Clean sand
2- Clay and silty sand
3- Clean sand 26 54.00 4.00 27 56.40 0.00 28 23.00 56.50 59.00 26.00 3- Clean sand 29 30 61.50 25.00 3- Clean sand 2- Clay and silty sand 31 64.00 4.00 3.00 32 66.50 2- Clay and silty sand Page 1

BR-13_24INPPC_PILES.out.txt	
33 69.00 5.00 2- Clay and silty sand	
34 71.50 63.00 4- Lime Stone/Very shelly :	sand
35 74.00 60.00 4- Lime Stone/Verý shellý s	sand
36 76.50 60.00 4- Lime Stone/Very shelly :	
37 79.00 50.00 4- Lime Stone/Very shelly :	
38 81.40 0.00 3- Clean sand	
39 81.50 35.00 4- Lime Stone/Very shelly :	sand
40 84.00 24.00 4- Lime Stone/Very shelly s	
41 86.50 35.00 4- Lime Stone/Very shelly :	sand
42 89.00 34.00 4- Lime Stone/Very shelly :	sand
43 91.50 35.00 4- Lime Stone/Very shelly :	sand
44 93.90 0.00 3- Clean sand	
45 94.00 64.00 4- Lime Stone/Very shelly :	
46 96.50 67.00 4- Lime Stone/Very shelly :	
47 99.00 81.00 4- Lime Stone/Very shelly :	sand
48 101.50 60.00 4- Lime Stone/Very shelly	sand
49 104.00 60.00 4- Lime Stone/Very shelly :	
50 106.50 100.00 4- Lime Stone/Very shelly	
51 109.00 100.00 4- Lime Stone/Very shelly :	
52 111.50 46.00 4- Lime Stone/Very shelly	sand
53 113.90 0.00 2- Clay and silty sand	
54 114.00 16.00 4- Lime Stone/Very shelly :	sand
55 116.40 0.00 2- Clay and silty sand	
56 116.50 36.00 4- Lime Stone/Very shelly	sand
57 119.00 60.00 4- Lime Stone/Very shelly	sand
58 120.50 0.00 5- Cavity layer	

Blowcount Average Per Soil Layer

Layer Num.	Starting Elevation (ft)	Bottom Elevation (ft)	Thickness (ft)	Average Blowcount (Blows/ft)	soil Type
1 2 3 4 5 6 7 8 9 10 11 12	55.20 47.30 47.20 38.70 36.20 23.80 23.70 6.30 6.20 -1.20 -1.30 -8.80	$\begin{array}{r} 47.30\\ 47.20\\ 38.70\\ 36.20\\ 23.80\\ 23.70\\ 6.30\\ 6.20\\ -1.20\\ -1.30\\ -8.80\\ -16.30\end{array}$	$\begin{array}{c} 2.50\\ 12.40\\ 0.10\\ 17.40\\ 0.10\\ 7.40\\ 0.10\\ 7.50\end{array}$	$\begin{array}{c} 2.00\\ 0.00\\ 16.59\\ 14.00\\ 9.62\\ 0.00\\ 14.56\\ 0.00\\ 3.32\\ 0.00\\ 24.67\\ 4.00\end{array}$	3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand 2-Clay and Silty Sand
13		-26.20	9.90	58.33	4-Limestone, Very
Shelly	-26.20	-26.30	0.10	0.00	3-Clean Sand
14 15	-26.20	-38.70		32.58	4-Limestone, Very
Shellíy		50170	10	52150	
16 17	-38.70 -38.80	-38.80 -58.70		0.00 72.38	3-Clean Sand 4-Limestone, Very
Shelly 18 19	-58.70 -58.80	-58.80 -61.20		$\begin{array}{c} 0.00 \\ 16.00 \end{array}$	2-Clay and Silty Sand 4-Limestone, Very
Shelly 20 21	-61.20 -61.30	-61.30 -65.30		0.00 45.00	2-Clay and Silty Sand 4-Limestone, Very
Shelly	Sand		P	age 2	

	BR-	13_24INPPC_	PILES.out.txt
-65.30	-65.30	0.00	0.00

5-

Driven Pile Data:

Pile unit weight = 150.00(pcf), Section Type: Square

Pile Geometry:

22

Width (in)	Length (ft)	Tip Elev. (ft)
	(ft) 5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00 21.00 23.00 25.00 27.00 29.00 31.00 35.00 37.00 39.00 41.00 43.00 45.00 47.00 49.00 51.00 53.00 57.00 57.00 57.00 61.00 63.00 67.00 63.00 67.00 63.00 77.00 79.00 81.00 83.00 85.00 87.00 99.00 101.00	(ft) 50.20 48.20 46.20 44.20 42.20 40.20 38.20 36.20 34.20 32.20 30.20 28.20 20.20 18.20 16.20 14.20 12.20 10.20 8.20 6.20 4.20 2.20 0.20 14.20 12.20 10.20 8.20 6.20 4.20 2.20 0.20 -1.80 -3.80 -5.80 -7.80 -9.80 -11.80 -15.80 -17.80 -23.80 -25.80 -31.80 -35.80 -37.80 -39.80 -31.80 -37.80 -39.80 -31.80 -35.80 -37.80 -39.80 -41.80 -45.80
24.00 24.00	$103.00 \\ 105.00$	-47.80 -49.80

BR-13_24INPPC_PILES.out.txt

24.00	107.00	-51.80
24.00	109.00	-53.80
24.00	111.00	-55.80
24.00	113.00	-57.80
24.00	115.00	-59.80
24.00	117.00	-61.80
24.00	119.00	-63.80
24.00	121.00	-65.80
24.00	123.00	-67.80
24.00	125.00	-69.80

Driven Pile Capacity:

Test Pile Length (ft)	Pile Width (in)	Ultimate Side Friction (tons)	Mobilized End Bearing (tons)	Estimated Davisson Capacity (tons)	Allowable Pile Capacity (tons)	Ultimate Pile Capacity (tons)
5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00 21.00 23.00 25.00 27.00 29.00 31.00 35.00 37.00 39.00 41.00 43.00 47.00 49.00 51.00 57.00 59.00 61.00 63.00 67.00 77.00 79.00 79.00	24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	$\begin{array}{c} 0.00\\ 0.00\\ 3.16\\ 9.93\\ 16.74\\ 22.49\\ 33.09\\ 40.53\\ 44.72\\ 48.34\\ 52.03\\ 55.49\\ 58.43\\ 59.17\\ 64.03\\ 68.62\\ 73.72\\ 78.37\\ 84.17\\ 92.98\\ 96.86\\ 102.34\\ 104.75\\ $	$\begin{array}{c} 11.91\\ 23.82\\ 45.37\\ 45.66\\ 46.03\\ 46.20\\ 47.48\\ 53.25\\ 53.48\\ 49.74\\ 45.83\\ 48.82\\ 52.68\\ 58.01\\ 60.15\\ 61.29\\ 62.07\\ 62.83\\ 63.37\\ 56.48\\ 49.53\\ 42.00\\ 35.65\\ 37.21\\ 43.59\\ 54.67\\ 73.24\\ 56.54\\ 42.68\\ 35.25\\ 37.65\\ 53.30\\ 89.78\\ 146.26\\ 183.19\\ 174.41\\ 166.95\\ 161.54\\ 176.55\end{array}$	$\begin{array}{c} 11.91\\ 23.82\\ 48.54\\ 55.59\\ 62.77\\ 68.69\\ 80.58\\ 93.77\\ 98.20\\ 98.08\\ 97.86\\ 104.31\\ 111.11\\ 117.19\\ 124.19\\ 129.91\\ 135.79\\ 141.21\\ 147.54\\ 149.47\\ 146.39\\ 144.34\\ 140.41\\ 141.96\\ 148.34\\ 159.42\\ 180.40\\ 173.05\\ 168.84\\ 168.73\\ 172.06\\ 187.78\\ 225.67\\ 285.99\\ 336.18\\ 337.25\\ 339.39\\ 343.58\\ 364.18\\ \end{array}$	5.96 11.91 24.27 27.79 31.38 34.35 40.29 46.89 49.04 48.93 52.15 55.56 58.59 62.09 64.95 67.90 70.60 73.77 74.73 73.19 72.17 70.20 70.98 74.17 79.71 90.20 86.53 84.42 84.36 86.03 93.89 112.84 142.99 168.09 168.62 169.69 171.79 182.09	$\begin{array}{c} 35.74\\ 71.46\\ 139.28\\ 146.91\\ 154.82\\ 161.09\\ 175.55\\ 200.27\\ 205.16\\ 197.57\\ 189.52\\ 201.94\\ 216.47\\ 233.21\\ 244.49\\ 252.48\\ 259.93\\ 266.87\\ 274.29\\ 262.44\\ 245.44\\ 228.34\\ 211.71\\ 216.37\\ 235.52\\ 268.77\\ 326.87\\ 286.14\\ 254.20\\ 239.23\\ 247.36\\ 294.39\\ 405.23\\ 578.50\\ 702.56\\ 686.07\\ 673.29\\ 666.66\\ 717.29\\ \end{array}$
81.00 83.00 85.00	24.0 24.0	192.45 196.82	184.34 190.67	376.78 387.49	$188.39 \\ 193.75$	745.46 768.83

			BR-13 24	INPPC_PILES	out tyt	
87.00	24.0	203.37	189.98	393.34	196.67	773.30
89.00	24.0	209.43	196,95	406.38	203.19	800.28
91.00	24.0	215.50	205.96	421.46	210.73	833.38
93.00	24.0	220.04	220.69	440.73	220.37	882.11
95.00	24.0	228.92	231.91	460.83	230.41	924.64
97.00	24.0	238.12	233.78	471.91	235.95	939.47
99.00	24.0	246.89	238.59	485.48	242.74	962.65
101.00	24.0	255.46	246.07	501.54	250.77	993.68
103.00	24.0	264.23	254.40	518.63	259.31	1027.43
105.00	24.0	273.39	261.79	535.19	267.59	1058.77
107.00	24.0	283.61	243.62	527.23	263.61	1014.46
109.00	24.0	293.21	218.45	511.66	255.83	948.56
111.00	24.0	302.62	211.54	514.16	257.08	937.24
113.00	24.0	309.71	209.90	_ 519.60	259.80	939.40
115.00	24.0	*****	Not enough	Sorr uncu	*****	
117.00	24.0	0.00	0.00	0.00	0.00	0.00
119.00	24.0	0.00	0.00	0.00	0.00	0.00
121.00	24.0	0.00	0.00	0.00	0.00	0.00
123.00	24.0	0.00	0.00	0.00	0.00	0.00
125.00	24.0	0.00	0.00	0.00	0.00	0.00

- 1. MOBILIZED END BEARING IS 1/3 OF THE ORIGINAL RB-121 VALUES.
- 2. DAVISSON PILE CAPACITY IS AN ESTIMATE BASED ON FAILURE CRITERIA, AND EQUALS ULTIMATE SIDE FRICTION PLUS MOBILIZED END BEARING.
- 3. ALLOWABLE PILE CAPACITY IS 1/2 THE DAVISSON PILE CAPACITY.
- 4. ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 3 x THE MOBILIZED END BEARING. EXCEPTION: FOR H-PILES TIPPED IN SAND OR LIMESTONE, THE ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 2 x THE MOBILIZED END BEARING.

BR-19_24INSTEEL_PILES.out.txt Florida Bridge Software Institute Date: May 14, 2014 Shaft and Pile Analysis (FB-Deep v.2.03) Time: 08:52:05 General Information: _____ Input file: 7A\Geotechnical\6 Miscellaneous\FB-Deep\BR-19_STEEL_PILES.spc
Project number: 3520G Job name: WEKIVA 7A Engineer: CGB Units: English Analysis Information: Analysis Type: SPT Soil Information: Boring date: 4-12-14, Boring Number: BR-19 Offset: Station number: Ground Elevation: 37.700(ft) Hammer type: Automatic Hammer, Correction factor = 1.24No. of Blows ID Depth soil Type (ft) (Blows/ft) -----1 0.00 10.00 3- Clean sand 3- Clean sand 2 2.00 18.00 3- Clean sand 3456789 4.00 9.00 6.00 12.00 3- Clean sand 3- Clean sand 8.00 3.00 9.00 3- Clean sand 11.50 8.00 14.00 3- Clean sand 16.50 18.90 10.00 3- Clean sand 2- Clay and silty sand 3- Clean sand 0.00 1Õ 19.00 5.00 3- Clean sand 11 21.50 2.00 12 24.00 3.00 3- Clean sand 13 26.50 1.00 3- Clean sand 14 29.00 2.00 3- Clean sand 15 3- Clean sand 2.00 31.50 3- Clean sand 16 34.00 5.00 17 36.40 0.00 2- Clay and silty sand 3- Clean sand 3- Clean sand 18 36.50 24.00 19 39.00 13.00 2- Clay and silty sand 3- Clean sand 20 41.40 0.00 21 41.50 2.00 22 23 3- Clean sand 44.00 2.00 2- Clay and silty sand 46.40 0.00 24 25 3- Clean sand 46.50 23.00 49.00 17.00 3- Clean sand 26 27 28 51.50 13.00 3- Clean sand 53.90 0.00 2- Clay and silty sand 54.00 3.00 3- Cleán sand 29 4.00 3- Clean sand 56.50 30 59.00 4.00 3- Clean sand 61.50 31 3.00 3- Clean sand 32 65.00 13.00 2- Clay and silty sand Page 1

		BR-19_24INSTEEL_PILES.out.txt
33	66.50	24.00 2- Clay and silty sand
34	68.90	0.00 3- Cleán sand
35	69.00	100.00 2- Clay and silty sand
36	71.50	100.00 2- Claý and siltý sand
37	74.00	100.00 4- Lime Stone/Very shelly sand
38	76.50	100.00 3- Clean sand
39	78.90	0.00 2- Clay and silty sand
40	79.00	16.00 3- Clean sand
41	81.40	0.00 2- Clay and silty sand
42	81.50	48.00 3- Clean sand
43	84.00	100.00 4- Lime Stone/Very shelly sand
44	86.50	67.00 4- Lime Stone/Very shelly sand
45	89.00	81.00 4- Lime Stone/Very shelly sand
46	91.50	69.00 4- Lime Stone/Very shelly sand
47	93.90	0.00 2- Clay and silty sand
48	94.00	20.00 4- Lime Stone/Very shelly sand
49	96.50	19.00 4- Lime Stone/Very shelly sand
50	99.00	34.00 4- Lime Stone/Very shelly sand
51	101.50	33.00 4- Lime Stone/Very shelly sand
52	104.00	15.00 4- Lime Stone/Very shelly sand
53	106.40	0.00 2- Clay and silty sand
54	106.50	100.00 4- Lime Stone/Very shelly sand
55	108.90	0.00 2- Clay and silty sand
56	109.00	23.00 4- Lime Stone/Very shelly sand
57	111.40	0.00 2- Clay and silty sand
58	111.50	50.00 4- Lime Stone/Very shelly sand
59	114.00	72.00 4- Lime Stone/Very shelly sand
60	116.40	0.00 2- Clay and silty sand
61	116.50	17.00 4- Lime Stone/Very shelly sand
62	118.90	0.00 2- Clay and silty sand
63	119.00	100.00 4- Lime Stone/Very shelly sand
64	120.50	0.00 5- Cavity layer

Blowcount Average Per Soil Layer

Layer Num.	Starting Elevation (ft)	Bottom Elevation (ft)	Thickness (ft)	Average Blowcount (Blows/ft)	Soil Type	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5helly 16 17 18 19	37.70 18.80 18.70 1.30 1.20 -3.70 -3.80 -8.70 -8.80 -16.20 -16.30 -27.30 -31.20 -31.30 -36.30 Sand -38.80 -41.20 -41.30 -43.70	-31.30 -36.30 -38.80 -41.20 -41.30	$\begin{array}{c} 0.10\\ 17.40\\ 0.10\\ 4.90\\ 0.10\\ 4.90\\ 0.10\\ 7.40\\ 0.10\\ 11.00\\ 3.90\\ 0.10\\ 5.00\\ 2.50\\ 2.40\\ 0.10\\ 2.40\\ 0.10\\ 2.40\\ 0.10\\ \end{array}$	$\begin{array}{c} 9.26\\ 0.00\\ 2.84\\ 0.00\\ 18.61\\ 0.00\\ 2.00\\ 0.00\\ 17.73\\ 0.00\\ 3.45\\ 19.77\\ 0.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 0.00\\ 16.00\\ 0.00\end{array}$	3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand 2-Clay and Silty Sand 4-Limestone, Very 3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand 2-Clay and Silty Sand	
Page 2						

<pre>BR-19_24INSTEEL_PILES.out.txt</pre>					
20	-43.80	-46.30	2.50	48.00	3-Clean Sand
21	-46.30	-56.20	9.90	79.35	4-Limestone, Very
Shelly					
22	-56,20	-56,30	0.10	0.00	2-Clay and Silty Sand
23	-56.30	-68.70	12.40	24.27	4-Liméstone, Very
Shelly	Sand				, ,
24	-68.70	-68.80	0.10	0.00	2-Clay and Silty Sand
	-68.80	-71.20	2.40	100.00	4-Limestone, Very
Shelly					
	-71.20	-71.30	0.10	0.00	2-Clay and Silty Sand
	-71.30	-73.70	2.40	23.00	4-Limestone, Very
Shelly	Sand				, ,
	-73.70	-73.80	0.10	0.00	2-Clay and Silty Sand
	-73.80	-78.70	4.90	60.78	4-Limestone, Very
Shelly	Sand				······································
	-78.70	~78.80	0.10	0.00	2-Clay and Silty Sand
	-78,80	-81.20	2.40	17.00	4-Limestone, Very
Shelly					,,
	-81.20	-81,30	0.10	0.00	2-Clay and Silty Sand
	-81.30	-82,80	1.50	100.00	4-Limestone, Very
Shelly				-	,,
	-82.80	-82.80	0.00	0.00	5-

Driven Pile Data:

Pile Geometry:

· · · · · · · · · · · · · · · · · · ·				
Width (in)	Length (ft)	Tip Elev. (ft)	Thickness (in)	Pile End
$\begin{array}{c} (11) \\ 24.00 \\ $	5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00 21.00 23.00 25.00 27.00 29.00 31.00 33.00 35.00 37.00 39.00 41.00 43.00 45.00 47.00 51.00 53.00 57.00 59.00 61.00 63.00	$\begin{array}{c} 32.70\\ 30.70\\ 28.70\\ 26.70\\ 24.70\\ 22.70\\ 20.70\\ 18.70\\ 16.70\\ 14.70\\ 12.70\\ 10.70\\ 8.70\\ 6.70\\ 4.70\\ 2.70\\ 0.70\\ -1.30\\ -3.30\\ -5.30\\ -7.30\\ -9.30\\ -11.30\\ -13.30\\ -15.30\\ -15.30\\ -17.30\\ -19.30\\ -21.30\\ -23.30\\ -25.30\\ \end{array}$	$\begin{array}{c} 0.50\\$	CLOSED CLOSED
			Page :)

		10	
24.00			INSTEEL_PILES.out.txt
24.00	65.00	-27.30	0.50 CLOSED
24.00	67.00	-29.30	0.50 CLOSED
24.00	69.00	-31.30	0.50 CLOSED
24.00	71.00	-33.30	0.50 CLOSED
24.00	73.00	-35.30	0.50 CLOSED
24.00	75.00	-37.30	0.50 CLOSED
24.00	77.00	-39.30	0.50 CLOSED
24.00	79.00	-41.30	0.50 CLOSED
24.00	81.00	-43.30	0.50 CLOSED
24.00	83.00	-45.30	0.50 CLOSED
24.00	85.00	-47.30	0.50 CLOSED
24.00	87.00	-49.30	0.50 CLOSED
24.00	89.00	-51.30	0.50 CLOSED
24.00	91.00	-53.30	0.50 CLOSED
24.00	93.00	-55.30	0.50 CLOSED
24.00	95.00	-57.30	0.50 CLOSED
24.00	97.00	-59.30	0.50 CLOSED
24.00	99.00	-61.30	0.50 CLOSED
24.00	101.00	-63.30	0.50 CLOSED
24.00	103.00	-65.30	0.50 CLOSED
24.00	105.00	-67.30	0.50 CLOSED
24.00	$107.00 \\ 109.00$	-69.30 -71.30	0.50 CLOSED 0.50 CLOSED
24.00		-73.30	
24.00	$111.00 \\ 113.00$	-75.30	
24.00 24.00	115.00	-77.30	0.50 CLOSED 0.50 CLOSED
24.00	117.00	-79.30	0.50 CLOSED
24.00	119.00	-81.30	0.50 CLOSED
24.00	121.00	-83.30	0.50 CLOSED
24.00	123.00	-85.30	0.50 CLOSED
	125.00	-87.30	0.50 CLOSED
24.00	123.00	-07.50	0.30 CLUSED

Driven Pile Capacity:

Test Pile Length (ft)	Pile Width (in)	Ultimate Side Friction (tons)	Mobilized End Bearing (tons)	Estimated Davisson Capacity (tons)	Allowable Pile Capacity (tons)	Ultimate Pile Capacity (tons)
5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00 21.00 23.00 25.00 27.00 29.00 31.00 33.00 35.00 37.00 39.00 41.00	$\begin{array}{c} 24.0\\$	$\begin{array}{r} 9.39\\ 12.38\\ 13.02\\ 14.54\\ 17.09\\ 19.53\\ 22.28\\ 23.43\\ 23.95\\ 24.30\\ 24.30\\ 24.30\\ 24.30\\ 24.30\\ 24.18\\ 23.98\\ 24.24\\ 25.09\\ 27.72\\ 32.60\\ 34.84\\ 34.90\end{array}$	$\begin{array}{c} 39.80\\ 37.10\\ 36.44\\ 36.09\\ 32.60\\ 28.15\\ 22.34\\ 3.71\\ 4.14\\ 3.25\\ 2.24\\ 3.48\\ 4.69\\ 14.29\\ 21.37\\ 21.46\\ 18.22\\ 12.38\\ 19.63\\ 32.38\end{array}$	$\begin{array}{r} 49.19\\ 49.48\\ 49.45\\ 50.63\\ 49.69\\ 47.69\\ 44.62\\ 27.14\\ 28.10\\ 27.55\\ 26.54\\ 27.78\\ 28.87\\ 38.27\\ 45.61\\ 46.55\\ 45.95\\ 44.99\\ 54.47\\ 58.18\\ \end{array}$	24.60 24.74 24.73 25.32 24.84 23.84 22.31 13.57 14.05 13.77 13.27 13.89 14.43 19.14 22.80 23.27 22.97 22.97 22.49 27.23	$128.80 \\ 123.69 \\ 122.32 \\ 122.82 \\ 114.89 \\ 103.99 \\ 89.30 \\ 34.56 \\ 36.38 \\ 34.04 \\ 31.02 \\ 34.74 \\ 38.25 \\ 66.85 \\ 88.34 \\ 89.46 \\ 82.40 \\ 69.75 \\ 93.73 \\ 104.7$
43.00	24.0	54.50	23.28	58.18	29.09	104.73

			BR-19 24I	NSTEEL_PILES	.out.txt	
45.00	24.0	34.90	26.86	61.76	30.88	115.48
47.00	24.0	36.59	38.66	75.25	37.62	152,56
49.00	24.0	42.02	31.89	73.91	36.96	137.69
51.00	24.0	46.49	25.71	72.20	36.10	123.63
53.00	24.0	49.45	20.45	69.90	34.95	110.79
55.00	24.0	49.77	15.63	65.40	32.70	96.67
57.00	24.0	49.77	15.32	65.09	32.54	95.72
59.00	24.0	49.77	18.31	68.08	34.04	104.69
61.00	24.0	49.77	21.72	71.49	35.74	114.92
63.00	24.0	50.58	27.55	78.13	39.07 47.29	133.24
65.00 67.00	24.0 24.0	55.79 62.47	38.79 41.32	94.58 103.79	47.29 51.90	172.16 186.43
69.00	24.0	67.73	62.62	130.35	65.17	255.59
71.00	24.0	78.10	63.64	141.74	70.87	269.03
73.00	24.0	88.69	62.99	151.69	75.84	277.67
75.00	24.0	96.88	59.42	156.30	78.15	275.13
77.00	24.0	104.72	67.37	172.09	86.04	306.82
79.00	24.0	108.54	95.08	203.62	101.81	393.79
81.00	24.0	111.24	80.69	191.93	95.97	353.32
83.00	24.0	117.54	103.01	220.54	110.27	426.55
85.00	24.0	125.50	134.59	260.08	130.04	529.25
87.00	24.0	133.04	122.88	255.91	127.96	501.67
89.00	24.0	140.58	116.67	257.24	128.62	490.58
91.00	24.0	148.12	111.14	259.26	129.63	481.54
93.00	24.0	153.89	109.79	263.68	131.84	483.27
95.00 97.00	24.0	$156.09 \\ 158.93$	102.75 104.23	258.84 263.16	129.42 131.58	464.33 471.62
97.00 99.00	24.0 24.0	163.56	104.23	264.50	132.25	471.02
101.00	24.0	168.80	93.46	262.25	131.13	449.17
103.00	24.0	173.31	84.29	257.61	128.80	426.20
105.00	24.0	175.69	78.84	254.52	127.26	412.20
107.00	24.0	178.04	85.57	263.60	131.80	434.74
109.00	24.0	180.97	86.34	267.30	133.65	439.97
111.00	24.0	183.06	84.00	267.06	133.53	435.07
113.00	24.0	188.96	77.65	266.61	133.31	421.91
115.00	24.0	*******	Not enough	Join autu	*****	
117.00	24.0	0.00	0.00	0.00	0.00	0.00
119.00	24.0	0.00	0.00	0.00	0.00	0.00
121.00	24.0	0.00	0.00	0.00	0.00	0.00
123.00	24.0	0.00	0.00	0.00	0.00	0.00
125.00	24.0	0.00	0.00	0.00	0.00	0.00

1. MOBILIZED END BEARING IS 1/3 OF THE ORIGINAL RB-121 VALUES.

2. DAVISSON PILE CAPACITY IS AN ESTIMATE BASED ON FAILURE CRITERIA, AND EQUALS ULTIMATE SIDE FRICTION PLUS MOBILIZED END BEARING.

3. ALLOWABLE PILE CAPACITY IS 1/2 THE DAVISSON PILE CAPACITY.

4. ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 3 x THE MOBILIZED END BEARING. EXCEPTION: FOR H-PILES TIPPED IN SAND OR LIMESTONE, THE ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 2 x THE MOBILIZED END BEARING.

BR-22_24INSTEEL_PILES.out.txt Florida Bridge Software Institute Date: May 14, 2014 Shaft and Pile Analysis (FB-Deep v.2.03) Time: 08:54:51 General Information: Input file: 7A\Geotechnical\6 Miscellaneous\FB-Deep\BR-22_STEEL_PILES.spc
Project number: 3520G Job name: WEKIVA 7A Engineer: CGB Units: English Analysis Information: _____ Analysis Type: SPT Soil Information: Boring date: 4-16-14, Boring Number: BR-22 Offset: Station number: Ground Elevation: 36.100(ft) Hammer type: Automatic Hammer, Correction factor = 1.24 No. of Blows ID Depth Soil Type (ft) (Blows/ft) _____ _____ 3- Clean sand 3- Clean sand 1 0.00 11.00 2 2.00 11.00 8.00 7.00 3 3- Clean sand 4.00 3- Clean sand 456789 6.00 8.00 3- Clean sand 6.00 3- Clean sand 11.50 11.00 13.90 0.00 2- Clay and silty sand 14.00 3- Clean sand 21.00 16.40 16.50 2- Clay and silty sand 3- Clean sand 0.00 1Ŏ 9.00 19.00 3- Clean sand 11 18.00 12 21.50 12.00 3- Clean sand 13 24.00 1.00 1- Plastic Clay 3- Clean sand 14 26.50 10.00 6.00 3- Clean sand 15 29.00 7.00 2- Clay and silty sand 2- Clay and silty sand 31.50 16 17 34.00 6.00 3- Clean sand
2- Clay and silty sand 36.50 39.00 $\substack{9.00\\10.00}$ 18 19 20 41.50 10.00 21 44.00 7.00 7.00 22 23 24 3- Clean sand 46.50 49.00 10.00 3- Clean sand 0.00 2- Clay and silty sand 51.40 25 4.00 3- Clean sand 51.50 26 27 28 54.00 7.00 3- Clean sand 56.50 3.00 3- Clean sand 2.00 3- Clean sand 59.00 3- Clean sand 29 61.00 2.00 2.00 1- Plastic Clay 30 64.00 66.50 5.00 3- Clean sand 31 32 69.00 6.00 3- Clean sand Page 1

33	71.50	BR-22_24INSTEEL_PILES.out.txt 8.00 3- Clean sand
34	74.00	11.00 3- Clean sand
35 36	76.50 79.00	12.00 3- Clean sand 7.00 3- Clean sand 6.00 3- Clean sand 0.00 2- Clay and silty sand 3.00 3- Clean sand 1.00 2- Clay and silty sand 0.00 3- Clean sand 23.00 2- Clay and silty sand
37 38	81.50 83.90	6.00 3- Clean sand 0.00 2- Clay and silty sand
39	84,00	3.00 3- Clean sand
40 41	86.50 89.00	2.00 3- Clean sand 2.00 3- Clean sand
42 43	91.50 94.00	1.00 3- Clean sand
44	96.50	1.00 2- Clay and silty sand
45 46	91.50 94.00 96.50 99.00 101.40 101.50	1.00 2- Clay and silty sand 0.00 3- Clean sand
47	101.50	23.00 2- Clay and silty sand 21.00 1- Plastic Clay 38.00 4- Lime Stone/Very shelly sand
48 49	$104.00 \\ 105.50$	38.00 4- Lime Stone/Very shelly sand
50 51	108.90 109.00	0.00 2- Clay and silty sand 9.00 4- Lime Stone/Very shelly sand 7.00 4- Lime Stone/Very shelly sand 1.00 5- Cavity layer
52	111.50	7.00 4- Lime Stone/Very shelly sand
53 54	114.00 116.50	1.00 5- Cavity layer 1.00 5- Cavity layer
55	119.00 121.50	1.00 5- Cavity layer 1.00 5- Cavity layer 1.00 4- Lime Steps (Very shelly sand
56 57	104.00 105.50 109.00 111.50 114.00 116.50 119.00 121.50 124.00 126.50 129.00	1.00 4- Lime Stone/Very shelly sand 1.00 4- Lime Stone/Very shelly sand 9.00 3- Clean sand
58 59	126.50 129.00	9.00 3- Clean sand 6.00 3- Clean sand
60	131.40	0.00 2- Clay and silty sand 31.00 3- Clean sand
61 62	133.90	0.00 2- Clav and silty sand
63 64	129.00 131.40 131.50 133.90 134.00 136.50 139.00 141.50 144.00 146.50 148.00 150.40 150.50	5.00 3- Clean sand 5.00 1- Plastic Clay
65	139.00	6.00 2- Clay and silty sand
66 67	141.50 144.00	1.00 2- Claý and siltý sand 3.00 3- Clean sand
68 69	146.50	5.00 3- clean sand
70	150.40	2.00 3- Clean sand 0.00 2- Clay and silty sand
71 72	150.50 153.00 155.40	9.00 3- Clean sand 7.00 3- Clean sand 0.00 2- Clay and silty sand
73 74	155.40 155.50	0.00 2- Clay and silty sand
75	158.00	3.00 3- Clean sand 4.00 3- Clean sand
76 77	$160.50 \\ 164.00$	1.00 3- Clean sand 1.00 1- Plastic Clay
78	165.50	1.00 1- Plastic Clay
79 80	$168.00 \\ 171.00$	1.00 1- Plastic Clay 1.00 3- Clean sand
81 82	173.00 175.50	1.00
83	178.00	1.00 3- Clean sand
84 85	$180.40 \\ 180.50$	0.00 2- Clay and silty sand 15.00 3- Clean sand
8.6 87	182.90 183.00	0.00 2- Clay and silty sand 100.00 3- Clean sand
88	185.50	100.00 3- Clean sand
89 90	188.00 190.50	41.00
91	193.00	54.00 4- Lime Stone/Very shelly sand
92 93	195.50 197.90	34.00 4- Lime Stone/Very shelly sand 0.00 2- Clay and silty sand
94 95	$198.00 \\ 200.50$	100.00 4- Lime Stone/Very shelly sand 100.00 4- Lime Stone/Very shelly sand
	200100	Page 2

		BR-22 24	INSTEEL_PILES.out.txt
96	202,90		2- Clay and silty sand
97	203.00		4- Lime Stone/Very shelly sand
98	205.50	53.00	4- Lime Stone/Very shelly sand
99	208.00		4- Lime Stone/Very shelly sand
100	210.50	0.00	5- Cavity layer

Blowcount Average Per Soil Layer

Layer Num.	Starting Elevation (ft)	Bottom Elevation (ft)	Thickness (ft)	Average Blowcount (Blows/ft)	Soil Type
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	$\begin{array}{r} 36.10\\ 22.20\\ 22.10\\ 19.70\\ 19.60\\ 12.10\\ 9.60\\ -0.40\\ -2.90\\ -10.40\\ -15.30\\ -15.30\\ -15.40\\ -27.90\\ -30.40\\ -47.80\\ -47.80\\ -65.30\\ -65.40\\ -65.40\\ -65.40\\ -67.90\\ -69.40\end{array}$	$\begin{array}{r} 19.70\\ 19.60\\ 12.10\\ 9.60\\ 4.60\\ -0.40\\ -2.90\\ -10.40\\ -15.30\\ -15.40\\ -27.90\\ -30.40\\ -47.80\\ -47.80\\ -47.90\\ -60.40\\ -65.30\\ -65.40\end{array}$	$\begin{array}{c} 0.10\\ 2.40\\ 0.10\\ 7.50\\ 2.50\\ 5.00\\ 5.00\\ 2.50\\ 7.50\\ 4.90\\ 0.10\\ 12.50\\ 2.50\\ 17.40\\ 0.10\\ 12.50\\ 4.90\\ 0.10\\ 12.50\\ 4.90\\ 0.10\\ 12.50\\ 1.50\end{array}$		3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand 1-Plastic Clay 3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand 1-Plastic Clay 3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand
Shelly 23 24	Sand -72.80 -72.90	-72.90 -77.90	0.10	0.00 8.00	2-Clay and Silty Sand 4-Limestone, Very
Shelly 25 26 Shelly	-77.90 -85.40	-85.40 -90.40		$\begin{array}{c} 1.00\\ 1.00\end{array}$	5-Void 4-Limestone, Very
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	-90.40 -95.30 -95.40 -97.80 -97.90 -100.40 -102.90 -107.90 -114.30 -114.40 -119.30 -119.40 -127.90 -134.90 -144.30 -146.80 -146.90	$\begin{array}{r} -95.30\\ -95.40\\ -97.80\\ -97.90\\ -100.40\\ -102.90\\ -107.90\\ -114.30\\ -114.40\\ -119.30\\ -114.40\\ -119.40\\ -127.90\\ -134.90\\ -144.30\\ -144.80\\ -146.80\\ -146.90\\ -156.90\\ \end{array}$	$\begin{array}{c} 0.10\\ 2.40\\ 0.10\\ 2.50\\ 2.50\\ 5.00\\ 6.40\\ 0.10\\ 4.90\\ 0.10\\ 8.50\\ 7.00\\ 9.40\\ 0.10\\ 2.40\\ 0.10\\ 2.40\\ 0.10\end{array}$	$\begin{array}{c} 7.53\\ 0.00\\ 31.00\\ 0.00\\ 5.00\\ 5.00\\ 3.50\\ 3.09\\ 0.00\\ 8.02\\ 0.00\\ 2.47\\ 1.00\\ 1.00\\ 1.00\\ 0.00\\ 15.00\\ 0.00\\ 85.25 \end{array}$	3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand 1-Plastic Clay 2-Clay and Silty Sand 3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand 1-Plastic Clay 3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand

	6.90 -16	BR-22_3 1.80	24INSTEEL_P 4.90	ILES.out.txt 44.20	4-Limestone, Very
47 -16		1.90 6.80	0.10 4.90	0.00 100.00	2-Clay and Silty Sand 4-Limestone, Very
49 -16		6.90 4.40	0.10 7.50	0.00 53.33	2-Clay and Silty Sand 4-Limestone, Very
Shelly Sand 50 -17	4.40 -17	4.40	0.00	0.00	5-
Driven Pile D ====================================	====	.00(pcf),	Section Typ	be: Pipe	
Pile Geometry	:				
width (in)	Length T (ft)	ip Elev. (ft)	Thickness (in)	Pile End	
$\begin{array}{c} 24.00\\ 20$	5.00 8.00 11.00 14.00 17.00 20.00 23.00 26.00 29.00 32.00 35.00 38.00 41.00 44.00 47.00 50.00 53.00 50.00 53.00 56.00 59.00 62.00 62.00 65.00 68.00 71.00 74.00	$\begin{array}{c} 31.10\\ 28.10\\ 25.10\\ 22.10\\ 19.10\\ 16.10\\ 13.10\\ 10.10\\ 7.10\\ 4.10\\ 1.10\\ -1.90\\ -4.90\\ -7.90\\ -10.90\\ -13.90\\ -16.90\\ -19.90\\ -22.90\\ -25.90\\ -28.90\\ -31.90\\ -34.90\\ -37.90\end{array}$	$\begin{array}{c} 0.50\\$	CLOSED CLOSED	

24.00	71.00	-34.90	0.50 CLOSED
24.00	74.00	-37.90	0.50 CLOSED
24.00	77.00	-40.90	0.50 CLOSED
24.00	80.00	-43.90	0.50 CLOSED
24.00	83.00	-46.90	0.50 CLOSED
24.00	86.00	-49.90	0.50 CLOSED
24.00	89.00	-52.90	0.50 CLOSED
24.00	92.00	-55,90	0.50 CLOSED
24.00	95.00	-58.90	0.50 CLOSED
24.00	98.00	-61.90	0.50 CLOSED
24.00	101.00	-64.90	0.50 CLOSED
24.00	104.00	-67.90	0.50 CLOSED
24.00	107.00	-70.90	0.50 CLOSED
24.00	110.00	-73.90	0.50 CLOSED
24.00	113.00	-76.90	0.50 CLOSED
24.00	116.00	-79.90	0.50 CLOSED
24.00	119.00	-82.90	0.50 CLOSED
24.00	122.00	-85.90	0.50 CLOSED
24.00	125.00	-88.90	0.50 CLOSED
24.00	128.00	-91.90	0.50 CLOSED
24.00	131.00	-94.90	0.50 CLOSED
			Page 4
			~

24.00	124 00		INSTEEL_PILES.out.txt
24.00	134.00	-97.90	0.50 CLOSED
24.00	137.00	-100.90	0.50 CLOSED
24.00	140.00	-103.90	0.50 CLOSED
24.00	143.00	-106.90	0.50 CLOSED
24.00	146.00	-109.90	0.50 CLOSED
24.00	149.00	-112.90	0.50 CLOSED
24.00	152.00	-115.90	0.50 CLOSED
24.00	155.00	-118.90	0.50 CLOSED
24.00	158.00	-121.90	0.50 CLOSED
24.00	161.00	-124.90	0.50 CLOSED
24.00	164.00	-127.90	0.50 CLOSED
24.00	167.00	-130.90	0.50 CLOSED
24.00	170.00	-133.90	0.50 CLOSED
24.00	173.00	-136.90	0.50 CLOSED
24.00	176.00	-139.90	0.50 CLOSED
24.00	179.00	-142.90	0.50 CLOSED
24.00	182.00	-145.90	0.50 CLOSED
24.00	185.00	-148.90	0.50 CLOSED
24.00	188.00	-151.90	0.50 CLOSED
24.00	191.00	-154.90	0.50 CLOSED
24.00	194.00	-157.90	0.50 CLOSED
24.00	197.00	-160.90	0.50 CLOSED
24.00	200.00	-163.90	0.50 CLOSED
24.00	203.00	-166.90	0.50 CLOSED
24.00	206.00	-169.90	0.50 CLOSED
24.00	209.00	-172.90	0.50 CLOSED
24.00	212.00	-175.90	0.50 CLOSED
24.00	215.00	-178.90	0.50 CLOSED

Driven Pile Capacity:

Test Pile Length (ft)	Pile width (in)	Ultimate Side Friction (tons)	Mobilized End Bearing (tons)	Estimated Davisson Capacity (tons)	Allowable Pile Capacity (tons)	Ultimate Pile Capacity (tons)
5.00 8.00 11.00 14.00 17.00 20.00 23.00 26.00 32.00 35.00 38.00 41.00 41.00 47.00 53.00 53.00 53.00 59.00 62.00 62.00 62.00 62.00 61.	$\begin{array}{c} 24.0\\$	$\begin{array}{c} 7.20\\ 10.14\\ 13.71\\ 16.60\\ 20.90\\ 27.45\\ 32.33\\ 33.87\\ 37.47\\ 42.45\\ 48.48\\ 53.48\\ 61.35\\ 68.22\\ 74.33\\ 78.10\\ 79.16\\ 81.20\\ 81.25\\ 81.25\\ 81.25\\ 81.38\\ 83.08\\ 85.05\end{array}$	$\begin{array}{c} 36.56\\ 35.91\\ 36.28\\ 43.66\\ 41.35\\ 34.97\\ 32.73\\ 20.60\\ 28.27\\ 18.71\\ 20.15\\ 21.36\\ 20.08\\ 21.88\\ 22.03\\ 19.12\\ 15.41\\ 10.71\\ 9.98\\ 12.96\\ 15.27\\ 18.45\\ 21.09\end{array}$	$\begin{array}{c} 43.76\\ 46.06\\ 49.99\\ 60.26\\ 62.25\\ 62.43\\ 65.07\\ 54.47\\ 65.74\\ 61.16\\ 68.63\\ 74.84\\ 81.43\\ 90.09\\ 96.36\\ 97.22\\ 94.57\\ 91.91\\ 91.23\\ 94.21\\ 96.66\\ 101.53\\ 106.15\end{array}$	$\begin{array}{c} 21.88\\ 23.03\\ 25.00\\ 30.13\\ 31.12\\ 31.21\\ 32.53\\ 27.24\\ 32.87\\ 30.58\\ 34.31\\ 37.42\\ 40.72\\ 45.05\\ 48.18\\ 48.61\\ 47.28\\ 45.95\\ 45.61\\ 47.10\\ 48.33\\ 50.77\\ 53.07\end{array}$	$\begin{array}{c} 116.88\\ 117.89\\ 122.55\\ 147.58\\ 144.94\\ 132.38\\ 130.54\\ 95.67\\ 122.28\\ 98.59\\ 108.92\\ 117.57\\ 121.60\\ 133.84\\ 140.43\\ 135.46\\ 125.38\\ 113.32\\ 111.18\\ 120.13\\ 127.21\\ 138.44\\ 148.34\end{array}$
71.00	24.0	85.05	21.09	106.15	53.07	148.34

		BR-22 24IN	NSTEEL PILES	.out.txt	
74.00 24.0 77.00 24.0 80.00 24.0 83.00 24.0 89.00 24.0 92.00 24.0 92.00 24.0 95.00 24.0 95.00 24.0 95.00 24.0 101.00 24.0 107.00 24.0 107.00 24.0 113.00 24.0 113.00 24.0 122.00 24.0 125.00 24.0 125.00 24.0 131.00 24.0 134.00 24.0 143.00 24.0 145.00 24.0 155.00 24.0 155.00 24.0 155.00 24.0 155.00 24.0 157.00 24.0 173.00 24.0 170.00 24.0 173.00 24.0 179.00 24.0 179.00 24.0 188.00 24.0 191.00 24.0 197.00 24.0	88.24 93.23 97.42 99.78 101.26 102.83 137.68 142.01 146.95 154.09	$\begin{array}{c} 23.92\\ 23.90\\ 20.60\\ 16.84\\ 14.39\\ 11.21\\ 6.90\\ 4.82\\ 7.76\\ 18.90\\ 31.32\\ 49.86\\ 20.80\\ 17.28\\ 0.00\\ 0.00\\ 18.03\\ 18.64\\ 18.57\\ 17.23\\ 13.78\\ 5.11\\ 5.01\\ 4.76\\ 12.85\\ 12.50\\ 8.93\\ 5.57\\ 5.04\\ 4.91\\ 3.75\\ 3.12\\ 0.37\\ 0.00\\ 20.14\\ 43.13\\ 59.14\\ 63.12\\ 66.51\\ 107.45\\ 102.84\end{array}$	NSTEEL_PILES 112.16 117.13 118.02 116.62 115.64 112.47 108.16 106.08 109.02 120.16 145.21 172.64 146.66 144.60 127.42 127.42 145.45 146.33 149.44 150.06 151.45 147.12 151.96 153.10 161.79 162.34 160.71 159.63 159.13 159.00 157.84 157.21 154.46 154.09 156.59 174.23 199.20 223.95 236.58 249.92 310.52 313.48	56.08 58.57 59.01 58.31 57.82 56.23 54.08 53.04 54.51 60.08 72.61 86.32 73.30 63.711 75.73 75.73 75.73 75.73 75.598 80.361 79.57 79.50 78.92 77.04 77.04 77.04 77.04 77.04 77.04 77.04 77.04 77.04 77.04 77.04 77.04 77.04 77.04 77.04 77.04 77.04 77.04 77.04 111.97 124.96 155.26	160.01 164.93 159.21 150.30 144.42 134.89 121.96 115.72 124.53 157.96 207.86 272.35 188.27 179.16 127.42 127.42 127.42 181.50 183.61 186.58 184.53 179.00 157.34 161.97 162.62 187.49 187.34 178.577 170.77 169.222 168.833 163.344 155.200 154.09 161.600 214.500 285.455 342.222 362.811 382.94 525.422 519.16
	210.64 218.54 225.36	$102.84 \\ 106.20 \\ 111.03$		156.74 162.37 168.19	519.16 537.14 558.46
209.0024.0212.0024.0215.0024.0	0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00	$\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \end{array}$	$\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \end{array}$

1. MOBILIZED END BEARING IS 1/3 of the original RB-121 values.

- 2. DAVISSON PILE CAPACITY IS AN ESTIMATE BASED ON FAILURE CRITERIA, AND EQUALS ULTIMATE SIDE FRICTION PLUS MOBILIZED END BEARING.
- 3. ALLOWABLE PILE CAPACITY IS 1/2 THE DAVISSON PILE CAPACITY.
- 4. ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 3 x THE MOBILIZED END BEARING. EXCEPTION: FOR H-PILES TIPPED IN SAND OR LIMESTONE, THE ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 2 x THE MOBILIZED END BEARING.

BR-25_24INPPC_PILES.out.txt Florida Bridge Software Institute Date: May 07, 2014 Time: 13:00:53 Shaft and Pile Analysis (FB-Deep v.2.03) General Information: Input file:on 7A\Geotechnical\6 Miscellaneous\FB-Deep\BR-25_PPC_PILES.spc
Project number: 3520G Job name: WEKIVA 7A Engineer: CGB Units: English Analysis Information: Analysis Type: SPT Soil Information: Boring date: 4-30-14, Station number: Offset: Boring Number: BR-25 Ground Elevation: 47.000(ft) Hammer type: Automatic Hammer, Correction factor = 1.24No. of Blows ID Depth Soil Type (ft) (Blows/ft) 1 0.00 20.00 3- Clean sand 3- Clean sand 23456789 2.00 16.00 3- Clean sand 4.00 13.00 6.00 14.00 3- Clean sand 14.00 3- Clean sand 8.00 3- Clean sand 18.00 11.50 14.00 17.00 3- Clean sand 16.50 18.90 19.00 12.00 3- Clean sand 2- Clay and silty sand 3- Clean sand 0.00 10 2.00 3- Clean sand 11 21.50 6.00 6.00 12 24.00 3- Clean sand 13 26.50 1.00 2- Clay and silty sand 14 29.00 1.00 2- Clay and silty sand 3- Clean sand 15 1.00 31.50 16 34.00 1.00 17 36.50 1.00 2.00 18 39.00 19 4.00 41.50 3- Clean sand 20 44.00 8.00 21 46.40 2- Clay and silty sand 0.00 22 3- Clean sand 46.50 100.00 2- Clay and silty sand 23 48.90 0.00 24 25 26 17.00 3- Clean sand 49.00 0.00 2- Clay and silty sand 51.40 51.50 100.00 3- Clean sand 27 54.00 100.00 3- Clean sand 28 100.00 3- Clean sand 56.50 29 59.00 100.00 3- Clean sand 30 100.00 3- Clean sand 61.50 63.90 0.00 2- Clay and silty sand 31 64.00 32.00 3- Clean sand 32 Page 1

		<pre>BR-25_24INPPC_PILES.out.txt</pre>
33	66.50	24.00 3- Clean sand
34	69.00	45.00 2- Clay and silty sand
35	71.50	100.00 2- Clay and silty sand
36	74.00	47.00 2- Clay and silty sand
37	76.50	56.00 2- Clay and silty sand
38	79.00	100.00 2- Clay and silty sand
39	81.50	100.00 2- Clay and silty sand
40	84.00	100.00 2- Clay and silty sand
41	86.50	100.00 4- Lime Stone/Very shelly sand
42	89.00	100.00 4- Lime Stone/Very shelly sand
43	91. <u>5</u> 0	100.00 4- Lime Stone/Very shelly sand
44	94.00	100.00 4- Lime Stone/Very shelly sand
45	95.50	0.00 5- Cavity layer

Blowcount Average Per Soil Layer

Layer Num.	Starting Elevation (ft)		Thickness (ft)	Average Blowcount (Blows/ft)	Soil Type
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{r} 47.00\\28.10\\28.00\\20.50\\5.50\\0.60\\0.50\\-1.90\\-2.00\\-4.40\\-4.50\\-16.90\\-17.00\\-22.00\\-39.50\end{array}$	$\begin{array}{c} 28.10\\ 28.00\\ 20.50\\ 5.50\\ 0.60\\ 0.50\\ -1.90\\ -2.00\\ -4.40\\ -4.50\\ -16.90\\ -17.00\\ -22.00\\ -39.50\\ -48.50\end{array}$	17.50	$\begin{array}{c} 15.41\\ 0.00\\ 4.67\\ 1.17\\ 5.96\\ 0.00\\ 100.00\\ 100.00\\ 17.00\\ 0.00\\ 100.00\\ 28.00\\ 78.29\\ 100.00\end{array}$	3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand 2-Clay and Silty Sand 4-Limestone, Very
Shelly 16	sand -48.50	-48.50	0.00	0.00	5-

Driven Pile Data:

Pile unit weight = 150.00(pcf), Section Type: Square

Pile Geometry:

Width	Length	Tip Elev.
(in)	(ft)	(ft)
$\begin{array}{c} 24.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\\ 24.00\end{array}$	$\begin{array}{c} 5.00\\ 7.00\\ 9.00\\ 11.00\\ 13.00\\ 15.00\\ 17.00\\ 19.00\\ 21.00\\ 23.00\\ 25.00\end{array}$	$\begin{array}{c} 42.00\\ 40.00\\ 38.00\\ 36.00\\ 34.00\\ 32.00\\ 30.00\\ 28.00\\ 26.00\\ 24.00\\ 22.00\end{array}$

24 00	77 00	BR~25_24INPPC_PILES.out.txt
24.00 24.00	27.00 29.00	20.00 18.00
24.00	31.00	16.00
24.00	33.00	14.00
24.00	35.00	12.00
24.00	37.00	10.00
24.00	39.00	8.00
24.00	41.00	6.00
24.00	43.00	4.00
24.00	45.00	2.00
24.00	47.00	0.00
24.00	49.00	-2.00
24.00	51.00	-4.00
24.00	53.00	-6.00
24.00	55.00	-8.00 -10.00
24.00 24.00	57.00 59.00	-12.00
24.00	61.00	-12.00
24.00	63.00	-16.00
24.00	65.00	-18.00
24.00	67.00	-20.00
24.00	69.00	-22.00
24.00	71.00	-24.00
24.00	73.00	-26.00
24.00	75.00	-28.00
24.00	77.00	-30.00
24.00	79.00	-32.00
24.00 24.00	81.00	-34.00 -36.00
24.00	83.00 85.00	-38.00
24.00	87.00	-40.00
24.00	89.00	-42.00
24.00	91.00	-44.00
24.00	93.00	-46.00
24.00	95.00	-48.00
24.00	97.00	-50.00
24.00	99.00	-52.00

Driven Pile Capacity:

Test Pile Length (ft)	Pile Width (in)	Ultimate Side Friction (tons)	Mobilized End Bearing (tons)	Estimated Davisson Capacity (tons)	Allowable Pile Capacity (tons)	Ultimate Pile Capacity (tons)
5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00 21.00 23.00 25.00 27.00 29.00 31.00	$\begin{array}{c} 24.0\\$	$14.50 \\ 19.41 \\ 24.69 \\ 31.50 \\ 38.18 \\ 44.43 \\ 49.26 \\ 50.96 \\ 51.87 \\ 54.07 \\ 56.11 \\ 56.62 \\ 56.6$	$\begin{array}{c} 80.56\\ 81.25\\ 81.60\\ 78.45\\ 67.31\\ 58.64\\ 51.99\\ 47.46\\ 42.09\\ 35.01\\ 27.99\\ 0.00\\ 0.00\\ 0.00\\ 0.00\end{array}$	95.06 100.67 106.28 109.95 105.49 103.07 101.25 98.42 93.96 89.09 84.10 56.62 56.62 56.62 56.62 Page 3	$\begin{array}{r} 47.53\\ 50.33\\ 53.14\\ 54.98\\ 52.74\\ 51.54\\ 50.63\\ 49.21\\ 46.98\\ 44.54\\ 42.05\\ 28.31\\ 28.31\\ 28.31\end{array}$	$\begin{array}{c} 256.18\\ 263.18\\ 269.48\\ 266.86\\ 240.11\\ 220.35\\ 205.22\\ 193.33\\ 178.13\\ 159.11\\ 140.08\\ 56.62\\ 56.62\\ 56.62\\ 56.62\\ 56.62\end{array}$

			BR-25_24	INPPC_PILES	out.txt	
33.00	24.0	56.62	0.00	56.62	28.31	56.62
35.00	24.0	56.62	0.15 3.78	56.77	28.39	57.07
37.00 39.00	24.0 24.0	56.62 56.62	5.78 7.31	60.40 63.93	30.20 31.96	67.96 78.54
41.00	24.0	56.62	27.18	83.80	41.90	138.15
43.00	24.0	57.21	30.48	87.69	43.85	148.66
45.00	24.0	58.82	34.24	93.05	46.53	161.52
47.00	24.0	64.61	71.19	135.81	67.90	278.19
49.00	24.0	71.87	181.82	253.69	126.85	617.33
51.00 53.00	24.0 24.0	75.61 88.84	146.22 145.90	221.83 234.75	$110.92 \\ 117.37$	514.27 526.55
55.00	24.0	103.45	149.10	252.55	126.27	550.74
57.00	24.0	120.76	149.93	270.69	135.34	570.54
59.00	24.0	137.15	151.85	289.00	144.50	592.71
61.00	24.0	155.61	151.80	307.41	153.70	611.01
63.00	24.0	170.15	151.75	321.90	160.95	625.40
65.00 67.00	24.0 24.0	184.31 193.94	$161.11 \\ 161.68$	345.42 355.62	172.71 177.81	667.65 678.97
69.00	24.0	210.67	161.61	372.27	186.14	695.48
71.00	24.Ŏ	231.71	154.02	385.74	192.87	693.79
73.00	24.0	252.69	146.11	398.79	199.40	691.01
75.00	24.0	273.71	138.34	412.06	206.03	688.75
77.00	24.0	294.68	130.41	425.09	212.54	685.91
79.00 81.00	24.0 24.0	315.62 336.57	135.30 158.95	450.93 495.52	225.46 247.76	721.54 813.42
83.00	24.0	357.52	181.29	538.80	269.40	901.38
85.00	24.0	377.33	203.22	580.55	290.27	986.99
87.00	24.0	389.45	214.01	603.46	301.73	1031.49
89.00	24.0	********	Not enough	Joir autu	*****	0.00
$91.00 \\ 93.00$	24.0 24.0	0.00 0.00	$0.00 \\ 0.00$	0.00 0.00	$0.00 \\ 0.00$	$0.00 \\ 0.00$
95.00	24.0	0.00	0.00	0.00	0.00	0.00
97.00	24.0	0.00	0.00	0.00	0.00	0.00
99.00	24.0	0.00	0.00	0.00	0.00	0.00

1. MOBILIZED END BEARING IS 1/3 OF THE ORIGINAL RB-121 VALUES.

- 2. DAVISSON PILE CAPACITY IS AN ESTIMATE BASED ON FAILURE CRITERIA, AND EQUALS ULTIMATE SIDE FRICTION PLUS MOBILIZED END BEARING.
- 3. ALLOWABLE PILE CAPACITY IS 1/2 THE DAVISSON PILE CAPACITY.
- 4. ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 3 x THE MOBILIZED END BEARING. EXCEPTION: FOR H-PILES TIPPED IN SAND OR LIMESTONE, THE ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 2 x THE MOBILIZED END BEARING.

		are Institute sis (FB-Deep v.	2. 04)	Date: June 21, 2017 Time: 16:31:24
Input 1 Project Job nar Engi nee	Information: File:n t number: 352 me: WEKIVA 7 er: CGB English	20G	I∖6 Miscellaneous∖	.FB-Deep\BR-30A_PPC_PI LES. spc
=========	Information: Type: SPT			
Boring Statior Ground	n number: (Elevation: 6		lumber: BR-30A prrection factor =	1. 24
I D	Depth	No. of Blows (Blows/ft)	Soil Type	
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\begin{array}{c} 0.00\\ 2.00\\ 3.90\\ 4.00\\ 6.00\\ 8.00\\ 11.50\\ 14.00\\ 16.40\\ 16.50\\ 19.00\\ 21.50\\ 23.90\\ 24.00\\ 26.40\\ 26.50\\ 29.00\\ 31.50\\ 31.60\\ 34.00\\ 36.50\\ 39.00\\ 41.50\\ 44.00\\ 46.50\\ 49.00\\ 51.50\\ 53.90\\ 54.00\\ 56.50\\ \end{array}$	$\begin{array}{c} 2.\ 00\\ 5.\ 00\\ 0.\ 00\\ 12.\ 00\\ 15.\ 00\\ 9.\ 00\\ 11.\ 00\\ 10.\ 00\\ 11.\ 00\\ 0.\ 00\\ 17.\ 00\\ 22.\ 00\\ 34.\ 00\\ 0.\ 00\\ 6.\ 00\\ 0.\ 00\\ 33.\ 00 \end{array}$	 3- Clean sand 2- Clay and silty 3- Clean sand 3- Clean sand 2- Clay and silty 3- Clean sand 2- Clay and silty 2- Clay and silty 2- Clay and silty 2- Clay and silty 1- Plastic Clay 1- Plastic Clay 1- Plastic Clay 1- Plastic Clay 3- Clean sand 2- Clay and silty 	r sand r sand r sand r sand r sand r sand r sand

BR-30A_PPC_PILES.out

		BR-30A_PPC_PILES.out
33	59.00	2.00 3-Clean sand
34	61.50	11.00 4- Lime Stone/Very shelly sand
35	63.90	0.00 3- Clean sand
36	64.00	58.00 4- Lime Stone/Very shelly sand
37	66.50	100.00 4- Lime Stone/Very shelly sand
38	69.00	23.00 3- Clean sand
39	71.40	0.00 2- Clay and silty sand
40	71.50	84.00 3- Clean sand
41	74.00	15.00 1- Plastic Clay
42	76.50	100.00 4- Lime Stone/Very shelly sand
43	79.00	100.00 4- Lime Stone/Very shelly sand
44	81.50	100.00 4- Lime Stone/Very shelly sand
45	83.90	0.00 3- Clean sand
46	84.00	23.00 4- Lime Stone/Very shelly sand
47 48	86.40 86.50	0.00 3- Clean sand
40 49	89.00	100.00 4- Lime Stone/Very shelly sand 81.00 4- Lime Stone/Very shelly sand
50	91.50	100.00 4- Lime Stone/Very shelly sand
50	94.00	42.00 4- Lime Stone/Very shelly sand
52	96.50	100.00 4- Lime Stone/Very shelly sand
53	99.00	100.00 4- Lime Stone/Very shelly sand
54	101.50	100.00 4- Lime Stone/Very shelly sand
55	104.00	61.00 4- Lime Stone/Very shelly sand
56	106.50	100.00 4- Lime Stone/Very shelly sand
57	108.90	0.00 3- Clean sand
58	109.00	24.00 4- Lime Stone/Very shelly sand
59	111.40	0.00 3- Clean sand
60	111.50	100.00 4- Lime Stone/Very shelly sand
61	114.00	100.00 4- Lime Stone/Very shelly sand
62	115.50	0.00 5- Cavity Layer

Blowcount Average Per Soil Layer

Layer Num.	Starting Elevation (ft)	Bottom Elevation (ft)		Average Blowcount (Blows/ft)	Soi I Type
1 2 3	61.70 57.80 57.70	57.80 57.70 45.30	0. 10 12. 40	3.46 0.00 11.05	3-Clean Sand 2-Clay and Silty Sand 3-Clean Sand
4 5 6 7	45.30 45.20	45.20 37.80	7.40	0.00 24.20	2-Clay and Silty Sand 3-Clean Sand
6 7	37.80 37.70	37.70 35.30	2.40	0.00 6.00	2-Clay and Silty Sand 3-Clean Sand
8 9	35. 30 35. 20	35.20 30.20	5.00	0.00 33.50	2-Clay and Silty Sand 3-Clean Sand
10 11	30. 20 30. 10	30. 10 27. 70		0.00 8.00	2-Clay and Silty Sand 3-Clean Sand
12 13 14	27.70 20.20 10.20	20. 20 10. 20 7. 80	10.00	2.67 5.25 34.00	2-Clay and Silty Sand 1-Plastic Clay 3-Clean Sand
15 16	7.80 7.70	7.80 7.70 5.30	0. 10	0.00 88.00	2-Clay and Silty Sand 3-Clean Sand
17 18	5.30 5.20	5.20 2.80	0. 10	0.00	2-Clay and Silty Sand 3-Clean Sand
19 20	2.80 2.70	2.70 0.20	0. 10	0.00	2-Clay and Silty Sand 3-Clean Sand
21 Shel I y	0.20	-2.20		11.00	4-Limestone, Very
-				~~~ ⁽	

			BR-30A_PPC	_PI LES. out	
	-2.20	-2.30	0. 10	0.00	3-Clean Sand
23	-2.30	-7.30	5.00	79.00	4-Limestone, Very
Shelly	Sand				_
24		-9.70	2.40	23.00	3-Clean Sand
	-9.70	-9.80	0. 10	0.00	2-Clay and Silty Sand
	-9.80		2.50	84.00	3-Clean Sand
27		-14.80	2.50	15.00	1-Plastic Clay
28		-22.20	7.40	100.00	4-Limestone, Very
Shel I y	Sand				
29	-22.20	-22.30	0. 10	0.00	3-Cl ean Sand
	-22.30	-24.70	2.40	23.00	4-Limestone, Very
Shel I y					
	-24.70	-24.80	0. 10	0.00	3-Cl ean Sand
	-24.80	-47.20	22.40	87.05	4-Limestone, Very
Shel I y					
	-47.20		0. 10	0.00	3-Cl ean Sand
	-47.30	-49.70	2.40	24.00	4-Limestone, Very
Shel I y					
	-49.70			0.00	3-Cl ean Sand
	-49.80	-53.80	4.00	100.00	4-Limestone, Very
Shel I y					
37	-53.80	-53.80	0.00	0.00	5-

Driven Pile Data:

Pile unit weight = 150.00(pcf), Section Type: Square

Pile Geometry:

Width (in)	Length (ft)	Tip Elev. (ft)
$\begin{array}{c} 24.\ 00\\ 24.\ $	5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00 21.00 23.00 25.00 27.00 29.00 31.00 35.00 37.00 39.00 41.00 43.00 45.00 47.00 49.00 51.00 53.00 57.00 59.00 61.00	$\begin{array}{c} 56.\ 70\\ 54.\ 70\\ 52.\ 70\\ 50.\ 70\\ 48.\ 70\\ 46.\ 70\\ 44.\ 70\\ 42.\ 70\\ 40.\ 70\\ 38.\ 70\\ 36.\ 70\\ 34.\ 70\\ 32.\ 70\\ 30.\ 70\\ 28.\ 70\\ 26.\ 70\\ 24.\ 70\\ 22.\ 70\\ 20.\ 70\\ 18.\ 70\\ 16.\ 70\\ 14.\ 70\\ 12.\ 70\\ 10.\ 70\\ 8.\ 70\\ 6.\ 70\\ 4.\ 70\\ 2.\ 70\\ 0.\ 70\\ 0.\ 70\\ \end{array}$
24.00	63.00	-1.30

45 00	-3.30
	-5.30
	-7.30
	-9.30
	-11.30
	-13.30
	-15.30
	-17.30
	-19.30
	-21.30
	-23.30
	-25.30
	-27.30
	-29.30
	-31.30
	-33.30
	-35.30
	-37.30
	-39.30
	-41.30
	-43.30
107.00	-45.30
109.00	-47.30
111.00	-49.30
113.00	-51.30
115.00	-53.30
117.00	-55.30
119.00	-57.30
	109.00 111.00 113.00 115.00 117.00

Driven Pile Capacity:

Test Pile Length (ft)	Pile Width (in)	UI timate Side Friction (tons)	Mobilized End Bearing (tons)	Estimated Davisson Capacity (tons)	Allowable Pile Capacity (tons)	Ultimate Pile Capacity (tons)
5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00 21.00 23.00 25.00 27.00 29.00 31.00 33.00 35.00 37.00 39.00 41.00 43.00 45.00 47.00 49.00	$\begin{array}{c} 24. \\ 0\\ 0\\ 24. \\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$\begin{array}{c} 4.\ 09\\ 8.\ 22\\ 11.\ 67\\ 14.\ 18\\ 15.\ 84\\ 16.\ 64\\ 27.\ 18\\ 34.\ 72\\ 44.\ 82\\ 53.\ 22\\ 56.\ 55\\ 60.\ 45\\ 73.\ 11\\ 80.\ 80\\ 81.\ 94\\ 83.\ 01\\ 83.\ 01\\ 83.\ 01\\ 83.\ 01\\ 83.\ 01\\ 83.\ 01\\ 84.\ 12\\ 90.\ 29\\ 95.\ 23\\ 101.\ 55\\ 104.\ 57\\ \end{array}$	$\begin{array}{c} 37.55\\ 38.80\\ 39.38\\ 41.92\\ 48.26\\ 60.65\\ 80.74\\ 73.65\\ 79.45\\ 83.93\\ 88.45\\ 83.23\\ 65.39\\ 53.72\\ 8.24\\ 0.67\\ 1.03\\ 1.94\\ 3.24\\ 25.42\\ 32.17\\ 36.22\\ 55.63\end{array}$	41. 65 47. 02 51. 05 56. 10 64. 10 77. 29 107. 91 108. 37 124. 27 137. 15 145. 00 143. 67 138. 50 134. 52 90. 18 83. 68 84. 04 84. 95 87. 35 115. 71 127. 40 137. 76 160. 20 Page 4	$\begin{array}{c} 20.\ 82\\ 23.\ 51\\ 25.\ 53\\ 28.\ 05\\ 32.\ 05\\ 32.\ 05\\ 38.\ 64\\ 53.\ 96\\ 54.\ 18\\ 62.\ 13\\ 68.\ 57\\ 72.\ 50\\ 71.\ 84\\ 69.\ 25\\ 67.\ 26\\ 45.\ 09\\ 41.\ 84\\ 42.\ 02\\ 42.\ 47\\ 43.\ 68\\ 57.\ 85\\ 63.\ 70\\ 68.\ 88\\ 80.\ 10\\ \end{array}$	$\begin{array}{c} 116.\ 75\\ 124.\ 62\\ 129.\ 81\\ 139.\ 93\\ 160.\ 62\\ 198.\ 59\\ 269.\ 39\\ 255.\ 67\\ 283.\ 16\\ 305.\ 01\\ 321.\ 90\\ 310.\ 12\\ 269.\ 28\\ 241.\ 96\\ 106.\ 66\\ 85.\ 02\\ 86.\ 11\\ 88.\ 83\\ 93.\ 83\\ 166.\ 55\\ 191.\ 74\\ 210.\ 20\\ 271.\ 46\end{array}$

BR-30A_PPC_PILES.out

			BR-30	DA_PPC_PILES	out	
51.00	24.0	109.70	58.35	168.06	84.03	284.76
53.00	24.0	120.45	49.86	170.31	85.15	270.03
55.00	24.0	129.21	46.99	176.19	88.10	270.17
57.00	24.0	134.18	41.43	175.61	87.80	258.47
59.00	24.0	137.64	82.65	220.29	110.15	385.59
61.00 63.00	24.0 24.0	138. 29 140. 06	88. 19 121. 83	226.48 261.89	113. 24 130. 94	402.86 505.54
65.00	24.0	145.36	121.03	274.79	130.94	533.67
67.00	24.0	154.93	118.25	273.18	136.59	509.68
69.00	24.0	163.97	107.39	271.37	135.68	486.15
71.00	24.0	168.56	108.71	277.27	138.63	494.68
73.00	24.0	181.01	148.27	329.29	164.64	625.83
75.00	24.0	195.45	184.02	379.47	189. 73	747.51
77.00	24.0	206.40	192.14	398.55	199.27	782.84
79.00	24.0	216.00	177.38	393.38	196.69	748.14
81.00	24.0	225.60	176.65	402.26	201.13	755.56 779.96
83.00 85.00	24.0 24.0	232.95 235.59	182.34 194.70	415. 29 430. 29	207.65 215.14	819.68
87.00	24.0	239.23	227.19	466.42	233.21	920.79
89.00	24.0	248.48	228.81	477.29	238.64	934.90
91.00	24.0	256.91	235.30	492.21	246.10	962.80
93.00	24.0	265.42	241.39	506.81	253.40	989.58
95.00	24.0	273.48	247.52	521.00	260.50	1016.04
97.00	24.0	282.51	252.93	535.44	267.72	1041.31
99.00	24.0	291.86	260.85	552.71	276.35	1074.40
101.00	24.0	301.45	264.08	565.53	282.77	1093.70
103.00 105.00	24.0 24.0	311.04 320.63	246. 30 220. 64	557.34 541.27	278. 67 270. 64	1049.95 982.56
105.00	24.0	320.03	220.04	551.23	275.62	992.50 993.72
107.00	24.0	********	Not enough		*****	775.72
111.00	24.0	0.00	0.00	0.00	0.00	0.00
113.00	24.0	0.00	0.00	0.00	0.00	0.00
115.00	24.0	0.00	0.00	0.00	0.00	0.00
117.00	24.0	0.00	0.00	0.00	0.00	0.00
119.00	24.0	0.00	0.00	0.00	0.00	0.00

- 1. MOBILIZED END BEARING IS 1/3 OF THE ORIGINAL RB-121 VALUES.
- 2. DAVISSON PILE CAPACITY IS AN ESTIMATE BASED ON FAILURE CRITERIA, AND EQUALS ULTIMATE SIDE FRICTION PLUS MOBILIZED END BEARING.
- 3. ALLOWABLE PILE CAPACITY IS 1/2 THE DAVISSON PILE CAPACITY.
- 4. ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 3 x THE MOBILIZED END BEARING. EXCEPTION: FOR H-PILES TIPPED IN SAND OR LIMESTONE, THE ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 2 x THE MOBILIZED END BEARING.

BR-32_24INPPC_PILES.out.txt Florida Bridge Software Institute Date: June 18, 2014 Shaft and Pile Analysis (FB-Deep v.2.04) Time: 14:21:49 General Information: Input file: C:\Users\cgballock\Desktop\FB-Deep\BR-32_PPC_PILES.spc Project number: 3520G Job name: WEKIVA 7A Engineer: CGB Units: English Analysis Information: Analysis Type: SPT Soil Information: _____ Boring date: 5/5/14, Boring Number: BR-32 Station number: Offset: Ground Elevation: 72.400(ft) Hammer type: Automatic Hammer, Correction factor = 1.24 No. of Blows ID Depth Soil Type (ft) (Blows/ft) $2.00 \\ 2.00$ 3- Clean sand 1 0.00 3- Clean sand 2 3 2.00 3- Clean sand 4.00 2.00 2.00 3- Clean sand 456789 6.00 8.00 2.00 3- Clean sand 3- Clean sand 11.50 1.00 14.00 0.00 2- Clay and silty sand 14.10 16.50 $3.00 \\ 7.00$ 3- Clean sand 3- Clean sand3- Clean sand 10 19.00 4.00 3- Clean sand 11 21.50 5.00 12 13 24.00 7.00 3- Clean sand 3- Clean sand 8.00 26.50 2- Clay and silty sand 14 29.00 0.00 15 29.10 13.00 3- Clean sand 13.00 3- Clean sand 16 31.50 17 34.00 14.00 3- Clean sand 2- Clay and silty sand 3- Clean sand 3- Clean sand 18 36.50 0.00 <u>1</u>9 36.60 26.00 22.00 20 39.00 3.00 1- Plastic Clay 21 41.50 22 45.50 4.00 3- Clean sand 23 2- Clay and silty sand 46.50 0.00 24 10.00 3- Clean sand 46.60 25 0.00 25.00 2- Clay and silty sand 49.00 26 27 49.10 3- Clean sand 0.00 19.00 2- Clay and silty sand 3- Clean sand 51.50 28 51.60 15.00 3- Clean sand 29 54.00 10.00 3- Clean sand 30 56.50 59.00 0.00 2- Clay and silty sand 31 59.10 32 29.00 3- Clean sand Page 1

		RP-37 7	4INPPC_PILES.out.txt
33	61.50		1- Plastic Clay
34	64.00		1- Plastic Clay
35	66.50		1- Plastic Clay
36	69.00		4- Lime Stone/Very shelly sand
37	71.50		4- Lime Stone/Very shelly sand
38	74.00		4- Lime Stone/Very shelly sand
39	76.50	17.00	4- Lime Stone/Very shelly sand
40	79.00	0.00	3- Clean sand
41	79.10		4- Lime Stone/Very shelly sand
42	81.50	38.00	1- Plastic Clay
43	84.00		2- Clay and silty sand
44	86.50	0.00	3- Clean sand
45	86.60	13.00	2- Clay and silty sand
46	89.00	0.00	3- Clean sand
47	89.10	70.00	2- Clay and silty sand
48	91.50	40.00	2- Clay and silty sand
49	94.00	90.00	2- Clay and silty sand
50	96.50	100.00	2- Clay and silty sand
51	99.00	100.00	2- Clay and silty sand
52	101.50	100.00	2- Clay and silty sand
53	104.00	58.00	2- Clay and silty sand
54	106.50		2- Clay and silty sand
55	109.00	36.00	2- Clay and silty sand
56	111.50	100.00	2- Clay and silty sand
57	114.00		2- Claý and siltý sand
58	115.50	0.00	5- Cavity layer

Blowcount Average Per Soil Layer

Layer Num.	Starting Elevation (ft)		Thickness (ft)	Average Blowcount (Blows/ft)	Soil Type
1	72.40	58.40	14.00	1.82	3-Clean Sand
1 2 3	58.40 58.30	58.30 43.40	$\begin{array}{c} 0.10\\ 14.90 \end{array}$	0.00 5.68	2-Clay and Silty Sand 3-Clean Sand
4	43.40	43.30	0.10	0.00	2-Clay and silty Sand
5	43.30 35.90	35.90 35.80	$7.40 \\ 0.10$	$\begin{array}{c}13.34\\0.00\end{array}$	3-Clean Sand 2-Clay and Silty Sand
4 5 6 7 8 9	35.80	30.90 26.90	4.90	23.96	3-Clean Sand
8 9	30.90 26.90	25.90		3.00 4.00	1-Plastic Clay 3-Clean Sand
10 11	25.90 25.80	25.80 23.40	0.10 2.40	$\begin{array}{c} 0.00\\ 10.00\end{array}$	2-Clay and Silty Sand 3-Clean Sand
12	23.40	23.30	0.10	0.00	2-Clay and Silty Sand
13 14	23.30 20.90	20.90 20.80	$2.40 \\ 0.10$	25.00 0.00	3-Clean Sand 2-Clay and Silty Sand
15 16	20.80 13.40	13.40 13.30	$7.40 \\ 0.10$	$\begin{array}{c} 14.61 \\ 0.00 \end{array}$	3-Clean Sand 2-Clay and Silty Sand
17	13.30	10.90	2.40	29.00	3-Clean Sand
18 19	10.90 3.40	3.40 -6.60	7.50 10.00	5.67 13.75	1-Plastic Clay 4-Limestone, Very
shelly	sand				
20 21	-6.60 -6.70	-6.70 -9.10		0.00 50.00	3-Clean Sand 4-Limestone, Very
Shelly	Sand				· · ·
22 23	-9.10 -11.60	$-11.60 \\ -14.10$	2.50 2.50	38.00 100.00	1-Plastic Clay 2-Clay and Silty Sand
24	-14.10	-14.20	0.10	0.00	3-Clean Sand
			P	age 2	

BR-32	_24INPPC_	PILES.	out.txt
-------	-----------	--------	---------

25	-14.20	-16.60	2.40	13.00	2-Clay and Silty Sand				
26	-16.60	-16.70	0.10	0.00	3-Clean Sand				
27	-16.70	-43.10	26.40	76.14	2-Clay and Silty Sand				
28	-43,10	-43.10	0.00	0.00	5-				
					5- 5-				

Driven Pile Data:

Pile unit weight = 150.00(pcf), Section Type: Square

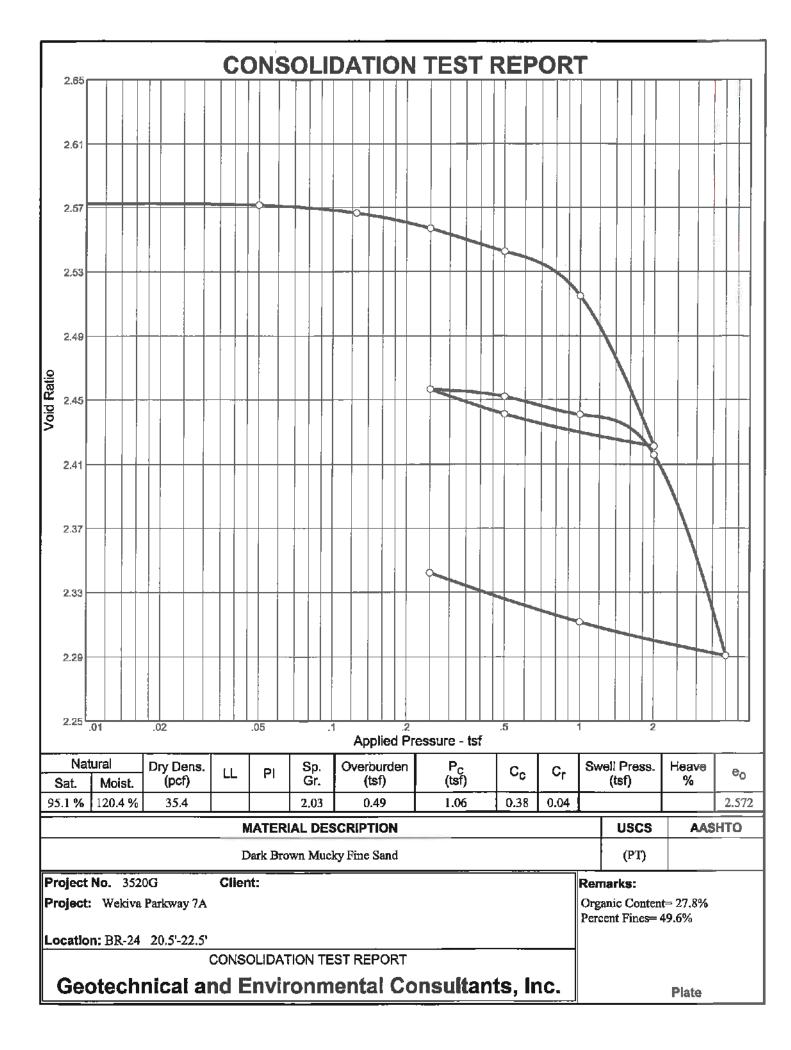
Pile Geometry:

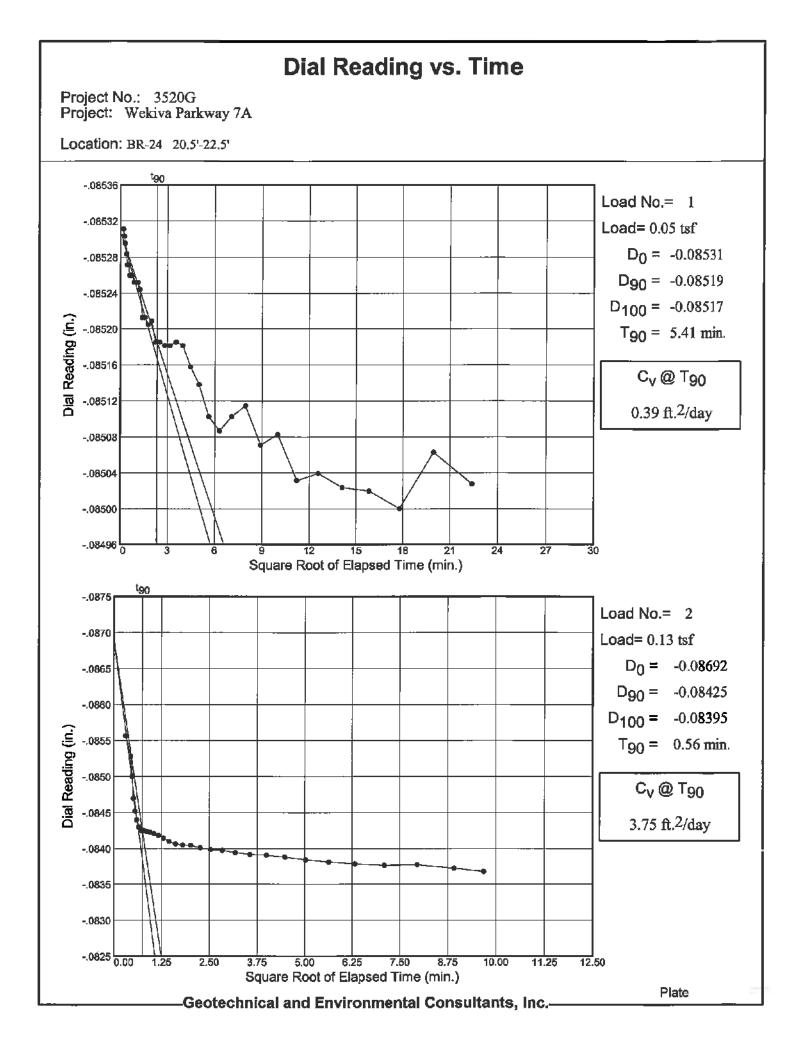
Pile Geometry:		
Width (in)	Length (ft)	Tip Elev. (ft)
$\begin{array}{c} 24.00\\ 20$	5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00 21.00 23.00 25.00 27.00 29.00 31.00 35.00 37.00 39.00 41.00 43.00 43.00 47.00 49.00 51.00 51.00 57.00 59.00 61.00 63.00 67.00 73.00 75.00 77.00 79.00 83.00 83.00 83.00 83.00 83.00 83.00 83.00 9.00 9.00 71.00 75.00 79.00 71.00 75.00 9.00 81.00 83.00	$\begin{array}{c} 67.40\\ 65.40\\ 63.40\\ 61.40\\ 59.40\\ 57.40\\ 55.40\\ 53.40\\ 51.40\\ 49.40\\ 47.40\\ 45.40\\ 43.40\\ 41.40\\ 39.40\\ 37.40\\ 35.40\\ 33.40\\ 31.40\\ 29.40\\ 27.40\\ 25.40\\ 23.40\\ 21.40\\ 19.40\\ 17.40\\ 15.40\\ 13.40\\ 11.40\\ 9.40\\ 7.40\\ 5.40\\ 33.40\\ 11.40\\ 9.40\\ 7.40\\ 5.40\\ 3.40\\ 11.40\\ 9.40\\ 7.40\\ 5.40\\ 3.40\\ 11.40\\ 9.40\\ 7.40\\ 5.40\\ 3.40\\ 11.60\\ -2.60\\ -4.60\\ -6.60\\ -10.60\\ -12.60\\ -16.60\\ -18.60\\ -20.60\\ -22.60\\ \end{array}$
24.00 24.00 24.00	95.00 97.00 99.00	-24.60 -26.60

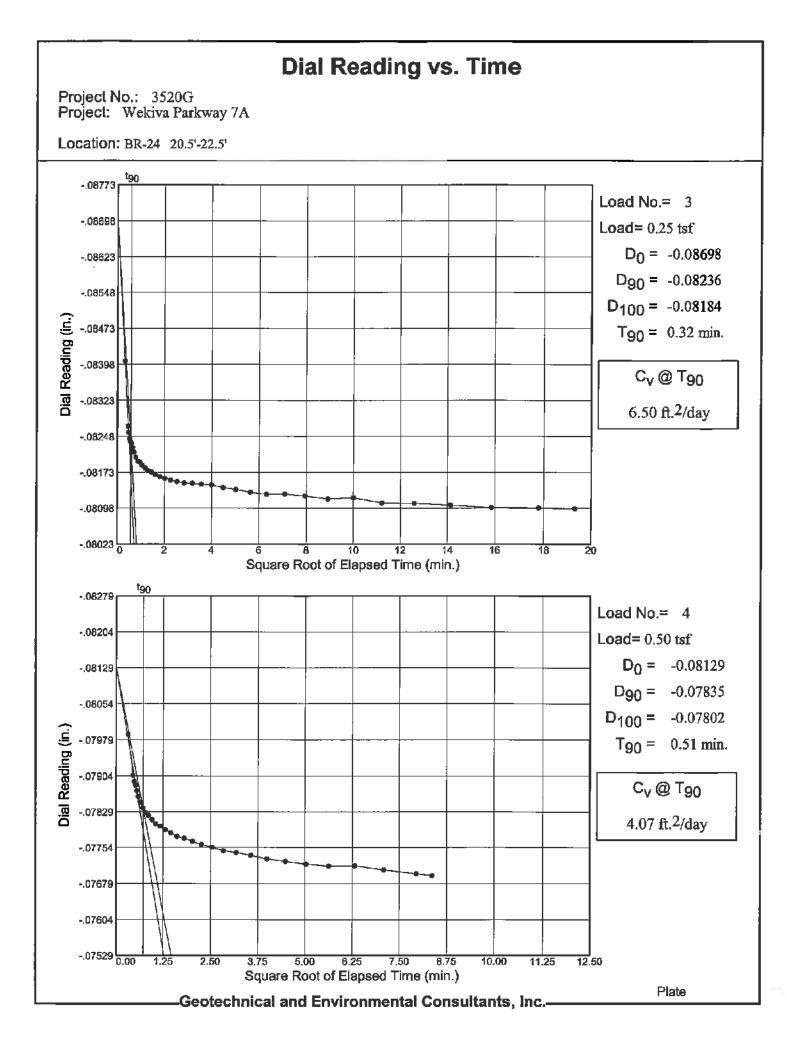
BR-32_24INPPC_PILES.out.txt

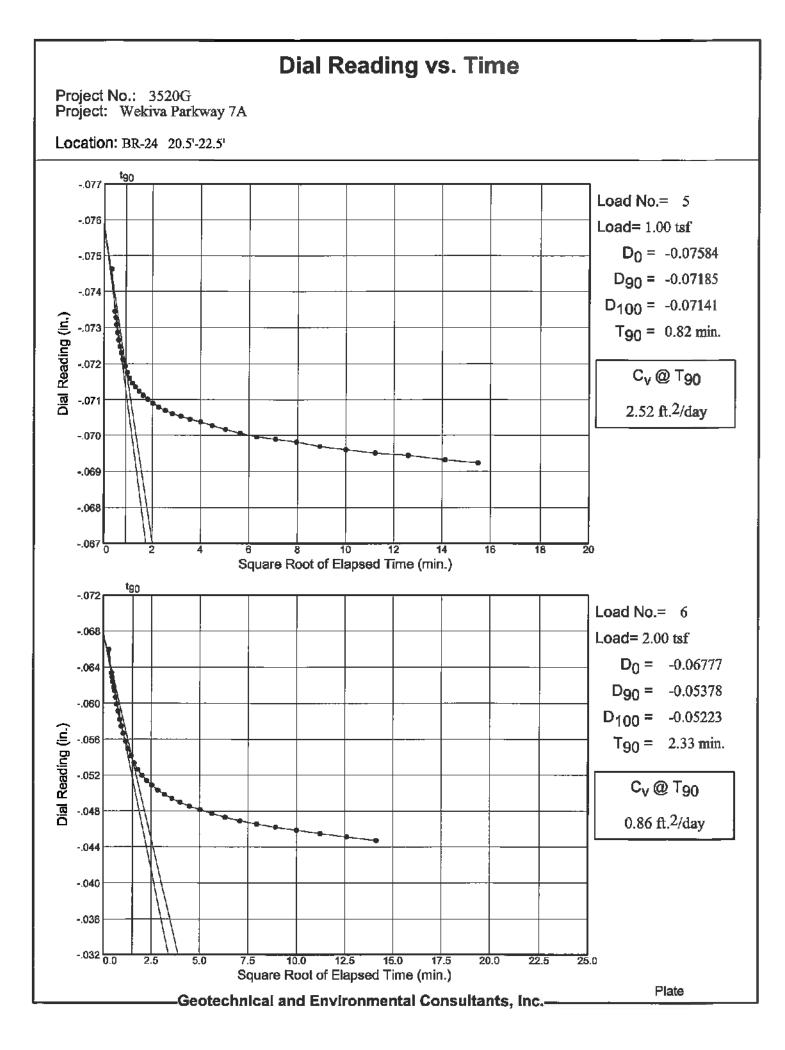
24.00	101.00	-28.60
24.00	103.00	-30.60
24.00	105.00	-32.60
24.00	107.00	-34.60
24.00	109.00	-36.60
24.00	111.00	-38.60
24.00	113.00	-40.60
24.00	115.00	-42.60
24.00	117.00	-44.60
24.00	119.00	-46.60

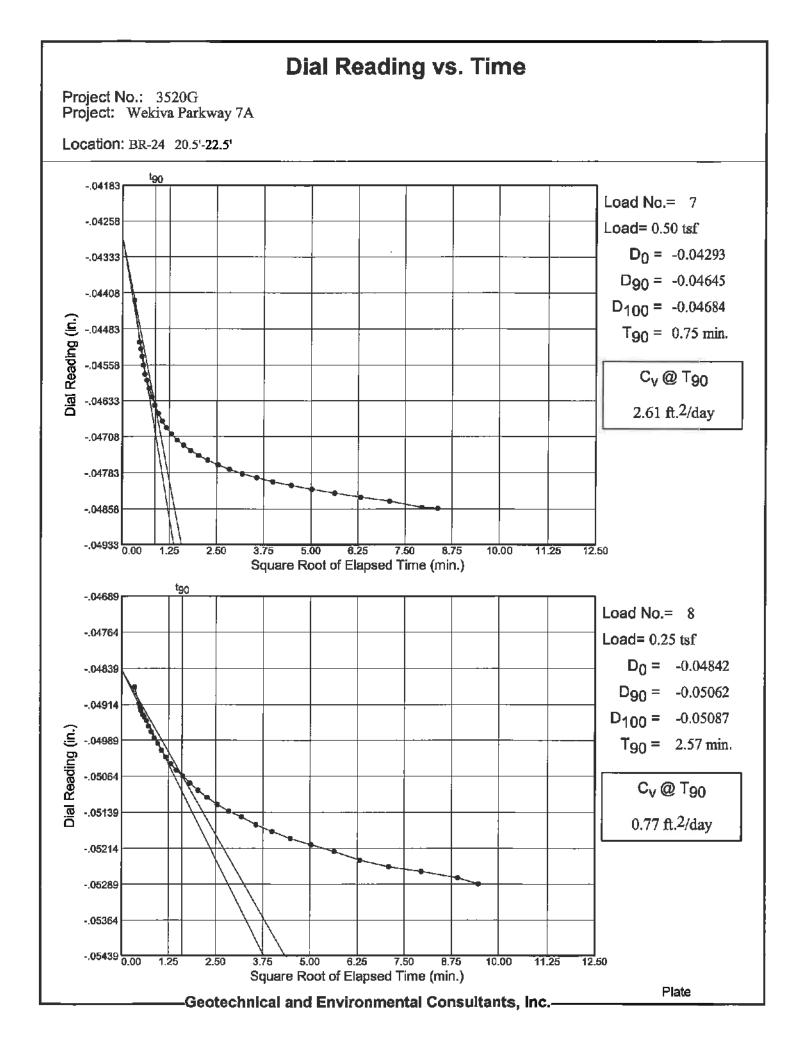
Driven Pile Capacity:

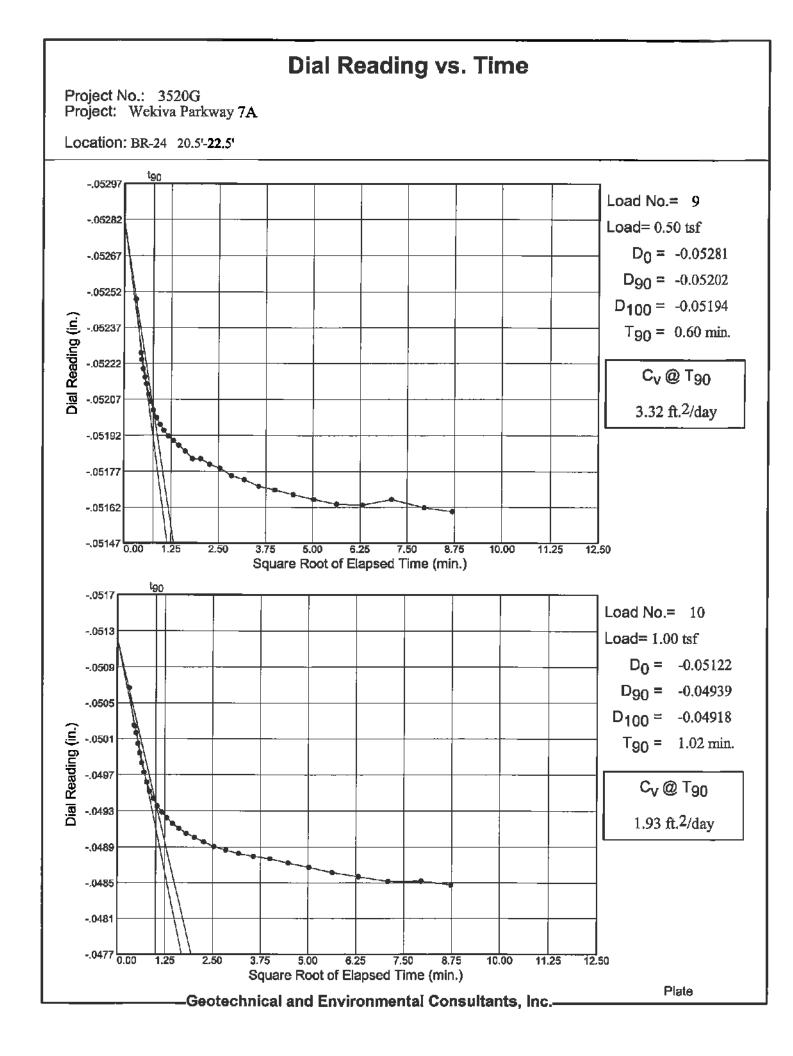

Test Pile Length (ft)	Pile Width (in)	Ultimate Side Friction (tons)	Mobilized End Bearing (tons)	Estimated Davisson Capacity (tons)	Allowable Pile Capacity (tons)	Ultimate Pile Capacity (tons)
5.00 7.00 9.00 11.00 13.00 15.00 17.00 29.00 21.00 23.00 27.00 29.00 31.00 33.00 37.00 39.00 41.00 43.00 41.00 43.00 45.00 51.00 51.00 51.00 53.00 57.00 51.00 53.00 57.00 51.00 53.00 57.00 51.00 53.00 51.00 53.00 55.00 57.00 51.00 53.00 55.00 57.00 51.00 53.00 55.00 57.00 53.00 55.00 55.00 57.00 53.00 55.0	$\begin{array}{c} 24.0\\$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.19\\ 1.56\\ 1.93\\ 2.29\\ 3.54\\ 5.17\\ 7.40\\ 12.66\\ 16.71\\ 20.02\\ 24.17\\ 30.50\\ 39.42\\ 44.40\\ 44.60\\ 44.60\\ 44.60\\ 44.60\\ 44.60\\ 44.60\\ 44.60\\ 44.60\\ 52.60\\ 57.64\\ 63.36\\ 67.46\\ 68.96\\ 78.15\\ 82.98\\ 83.51\\ 87.61\\ 93.51\\ 96.05\\ 98.21\\ 100.05\\ 102.81\\ 105.66\\ 120.31\\ 141.72\\ 160.17\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 1.49\\ 5.46\\ 6.86\\ 8.26\\ 9.09\\ 11.54\\ 15.12\\ 19.37\\ 28.17\\ 37.25\\ 42.24\\ 43.08\\ 45.73\\ 46.72\\ 51.54\\ 39.71\\ 35.76\\ 10.20\\ 18.38\\ 54.99\\ 58.94\\ 54.39\\ 53.97\\ 46.89\\ 38.37\\ 36.88\\ 32.29\\ 13.46\\ 24.18\\ 36.47\\ 59.34\\ 62.01\\ 67.03\\ 69.70\\ 81.98\\ 69.71\\ 61.70\\ 64.83\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 1.49\\ 5.46\\ 6.86\\ 8.45\\ 10.65\\ 13.47\\ 17.41\\ 22.92\\ 33.34\\ 44.65\\ 54.90\\ 59.79\\ 65.75\\ 70.90\\ 82.04\\ 79.13\\ 80.15\\ 54.80\\ 62.99\\ 100.37\\ 105.90\\ 107.00\\ 111.61\\ 110.25\\ 105.83\\ 105.85\\ 110.45\\ 96.45\\ 107.68\\ 124.08\\ 152.84\\ 155.39\\ 160.22\\ 167.08\\ 172.52\\ 187.64\\ 190.02\\ 203.42\\ 225.00\\ Page 4 \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.75\\ 2.73\\ 3.43\\ 4.22\\ 5.32\\ 6.74\\ 8.70\\ 11.46\\ 16.67\\ 22.33\\ 27.45\\ 29.89\\ 32.88\\ 35.45\\ 41.02\\ 39.57\\ 40.08\\ 27.40\\ 31.49\\ 50.19\\ 52.95\\ 53.50\\ 55.81\\ 55.13\\ 52.91\\ 52.95\\ 53.50\\ 55.81\\ 55.13\\ 52.91\\ 52.92\\ 53.50\\ 55.81\\ 55.13\\ 52.91\\ 52.92\\ 53.84\\ 62.04\\ 76.42\\ 77.69\\ 80.11\\ 83.54\\ 86.26\\ 93.82\\ 95.01\\ 101.71\\ 112.50\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 4.48\\ 16.37\\ 20.58\\ 24.96\\ 28.83\\ 36.56\\ 47.65\\ 61.66\\ 89.69\\ 119.16\\ 139.38\\ 145.95\\ 157.21\\ 164.34\\ 185.11\\ 158.56\\ 151.67\\ 75.20\\ 99.75\\ 210.34\\ 223.78\\ 215.78\\ 219.56\\ 204.04\\ 182.56\\ 179.61\\ 175.03\\ 123.38\\ 156.04\\ 197.03\\ 271.51\\ 274.07\\ 284.25\\ 301.14\\ 311.93\\ 351.60\\ 329.44\\ 326.83\\ 354.67\\ \end{array}$

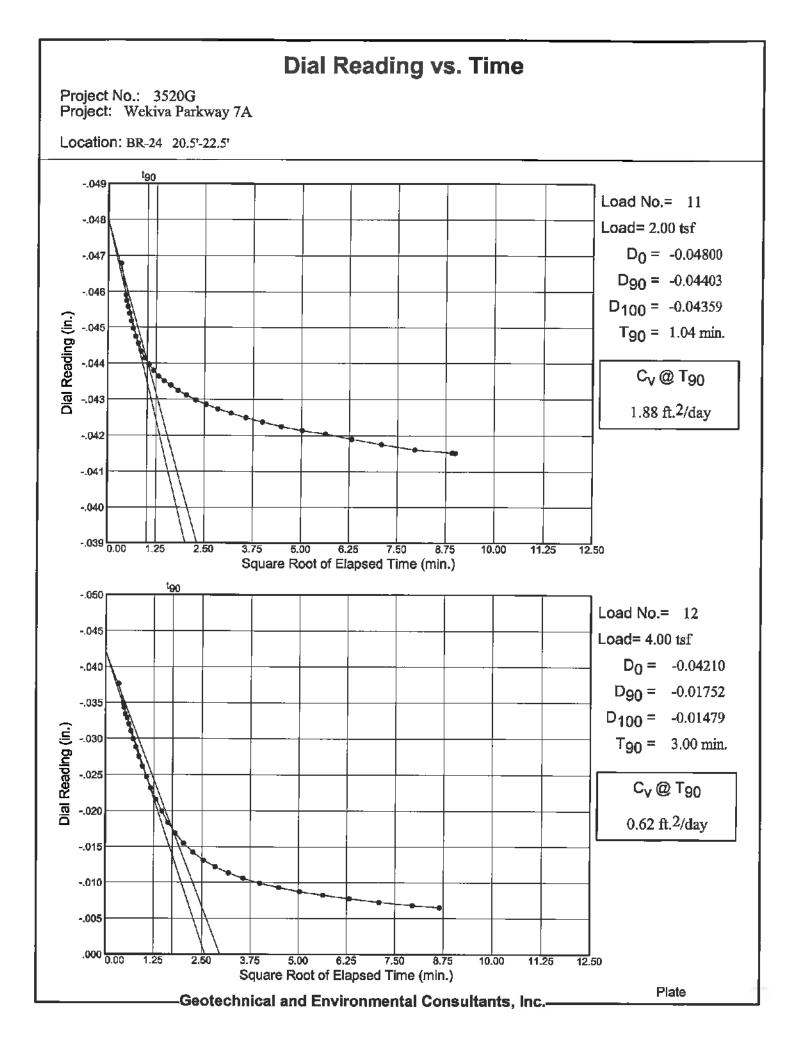

			BR-32 24	INPPC_PILES	outstxt	
87.00	24.0	168.99	84.51	253.50	126.75	422.53
89.00	24.0	173.43	98.62	272.06	136.03	469.30
91.00	24.0	193.20	99.94	293.14	146.57	493.02
93.00	24.0	212.63	102.64	315.27	157.63	520.54
95.00	24.0	231.18	108.64	339.83	169.91	557.11
97.00	24.0	253.10	108.13	361.23	180.61	577.49
99.00	24.0	274.00	111.92	385.92	192.96	609.76
101.00	24.0	294.94	112.19	407.14	203.57	631.52
103.00	24.0	315.89	114.20	430.09	215.04	658.49
105.00	24.0	336.84	120.25	457.08	228.54	697.57
107.00	24.0	357.77	120.95	478.71	239.36	720.60
109.00	24.0	******	Not enough	Sorr Gata	****	
111.00	24.0	0.00	0.00	0.00	0.00	0.00
113.00	24.0	0.00	0.00	0.00	0.00	0.00
115.00	24.0	0.00	0.00	0.00	0.00	0.00
117.00	24.0	0.00	0.00	0.00	0.00	0.00
119.00	24.0	0.00	0.00	0.00	0.00	0.00

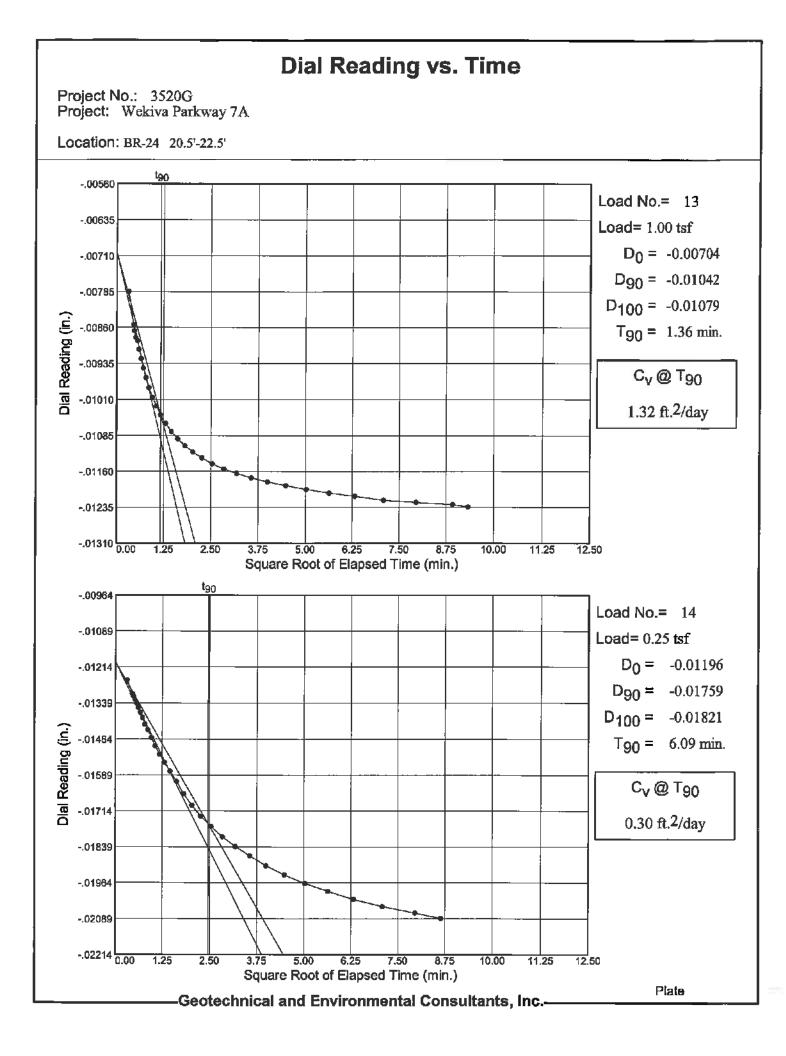

1. MOBILIZED END BEARING IS 1/3 OF THE ORIGINAL RB-121 VALUES.

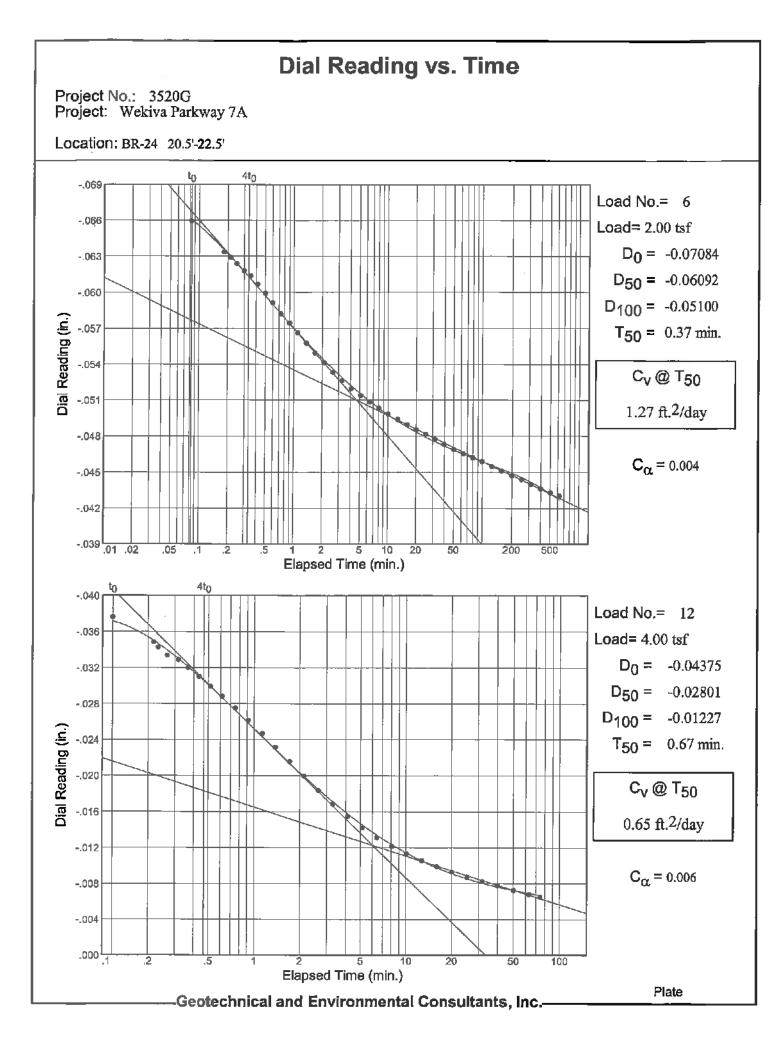

- 2. DAVISSON PILE CAPACITY IS AN ESTIMATE BASED ON FAILURE CRITERIA, AND EQUALS ULTIMATE SIDE FRICTION PLUS MOBILIZED END BEARING.
- 3. ALLOWABLE PILE CAPACITY IS 1/2 THE DAVISSON PILE CAPACITY.
- 4. ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 3 x THE MOBILIZED END BEARING. EXCEPTION: FOR H-PILES TIPPED IN SAND OR LIMESTONE, THE ULTIMATE PILE CAPACITY IS ULTIMATE SIDE FRICTION PLUS 2 x THE MOBILIZED END BEARING.

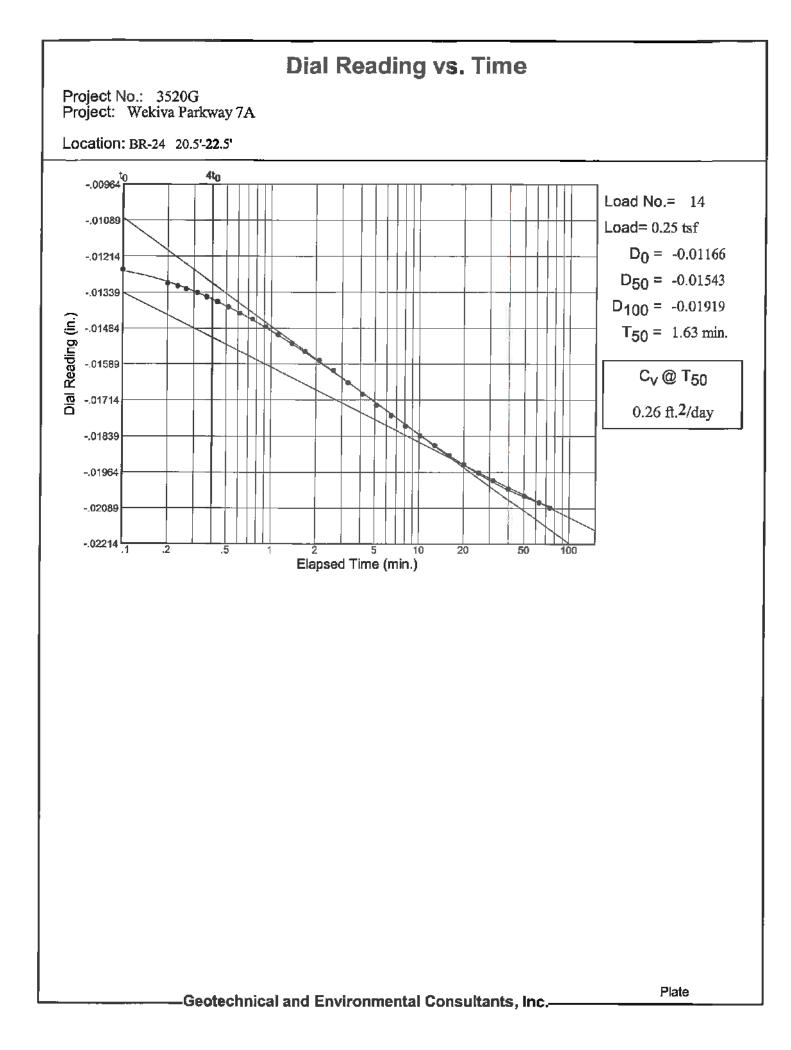

CONSOLIDATION TEST RESULTS

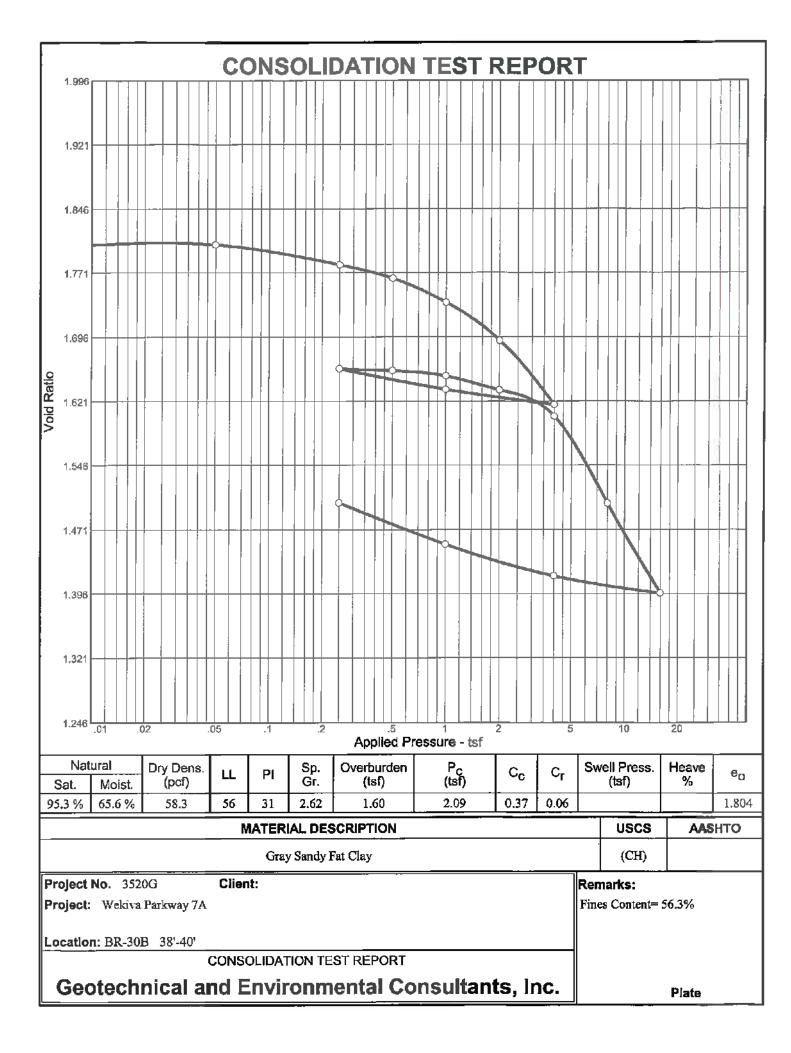


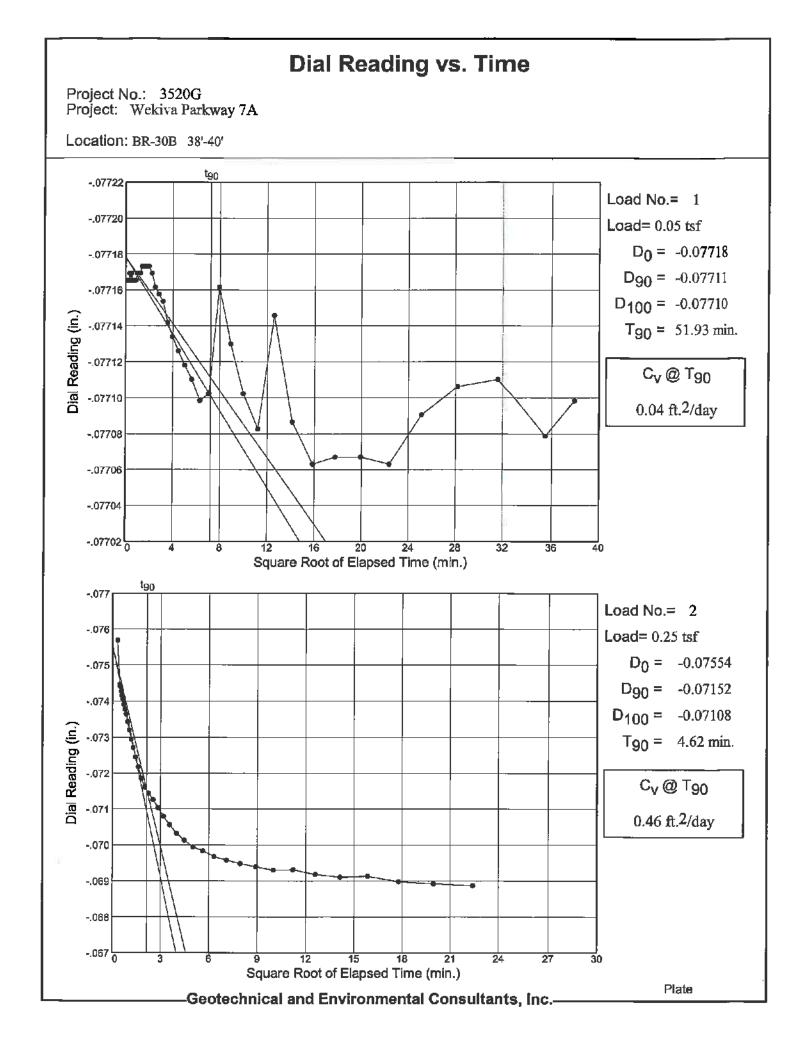


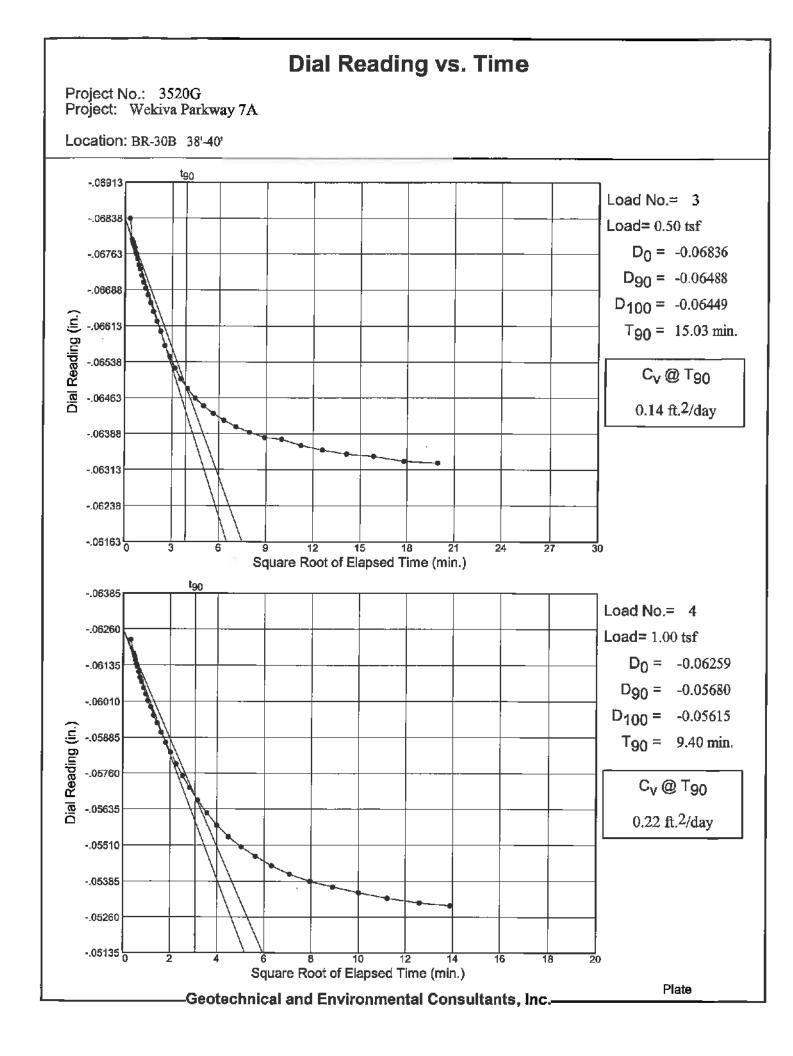


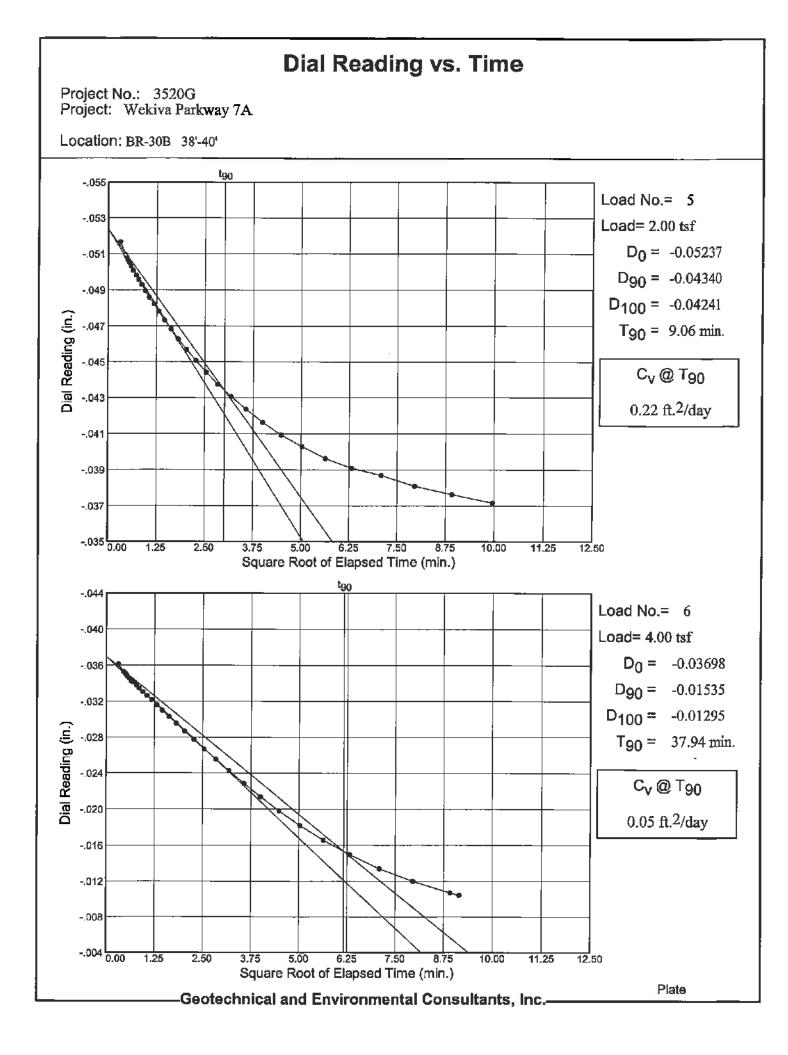


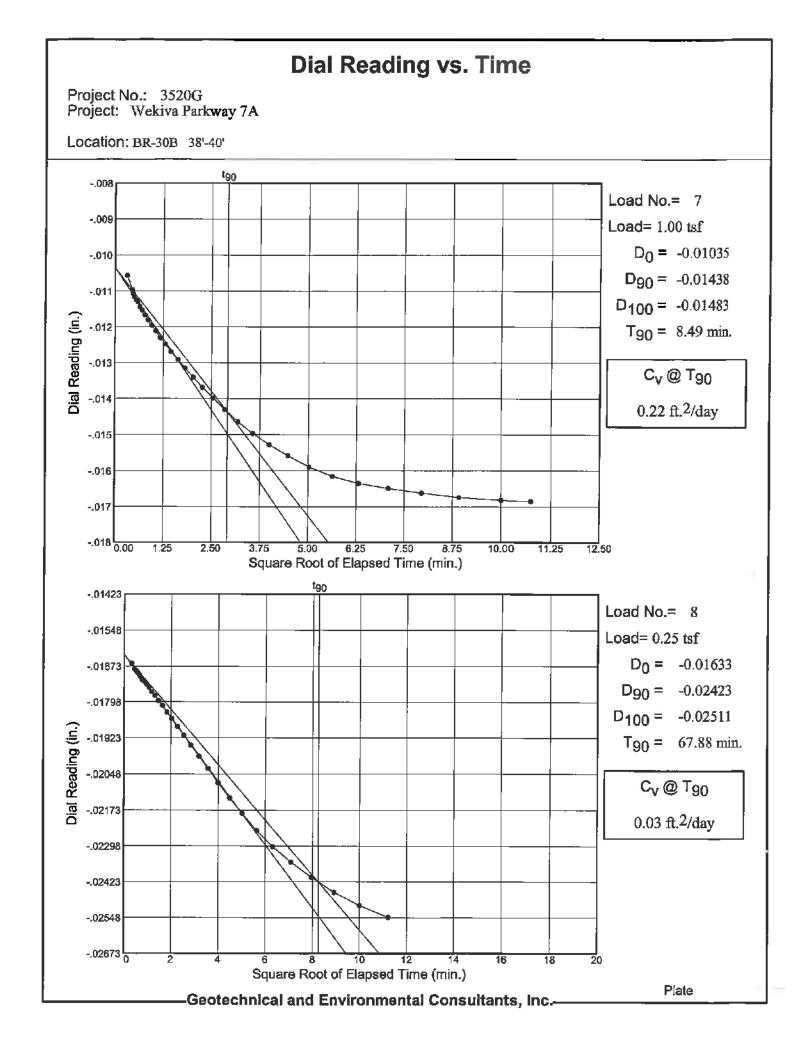


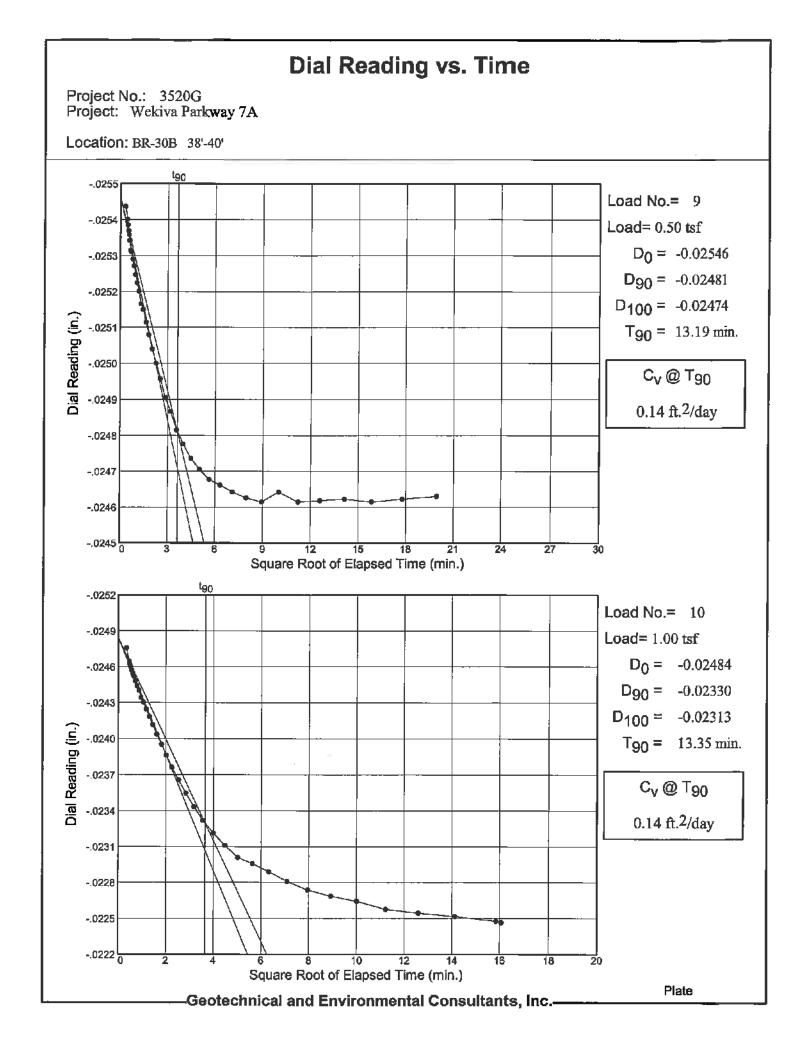


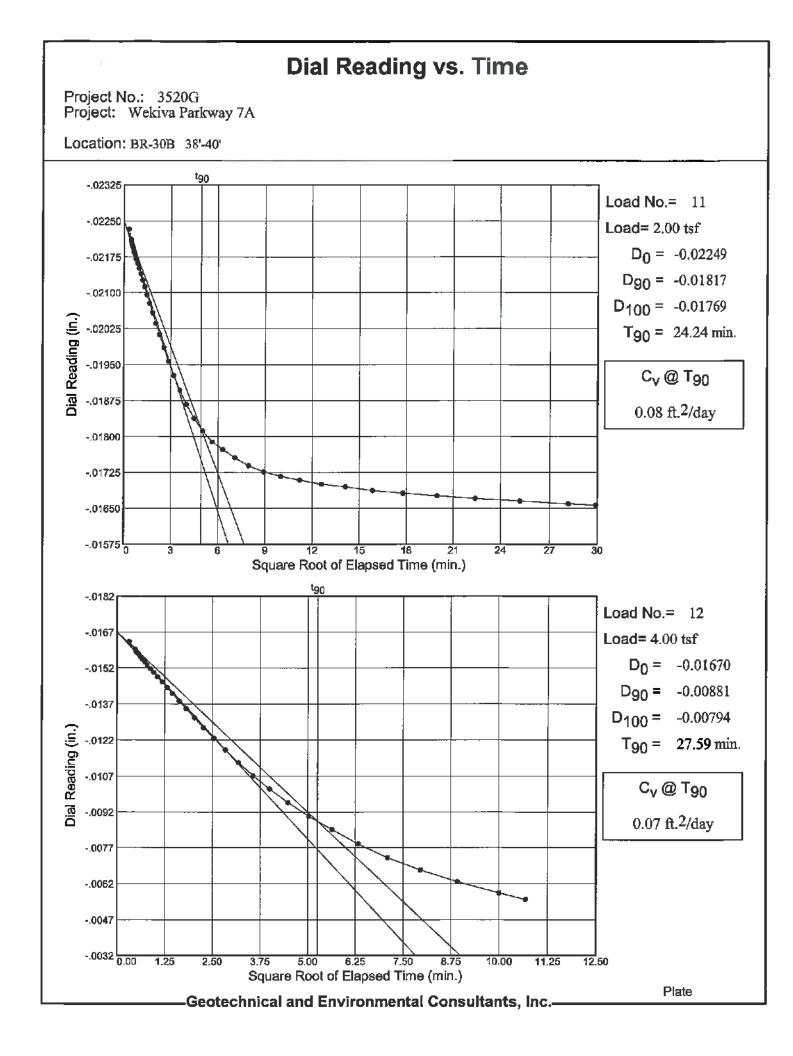


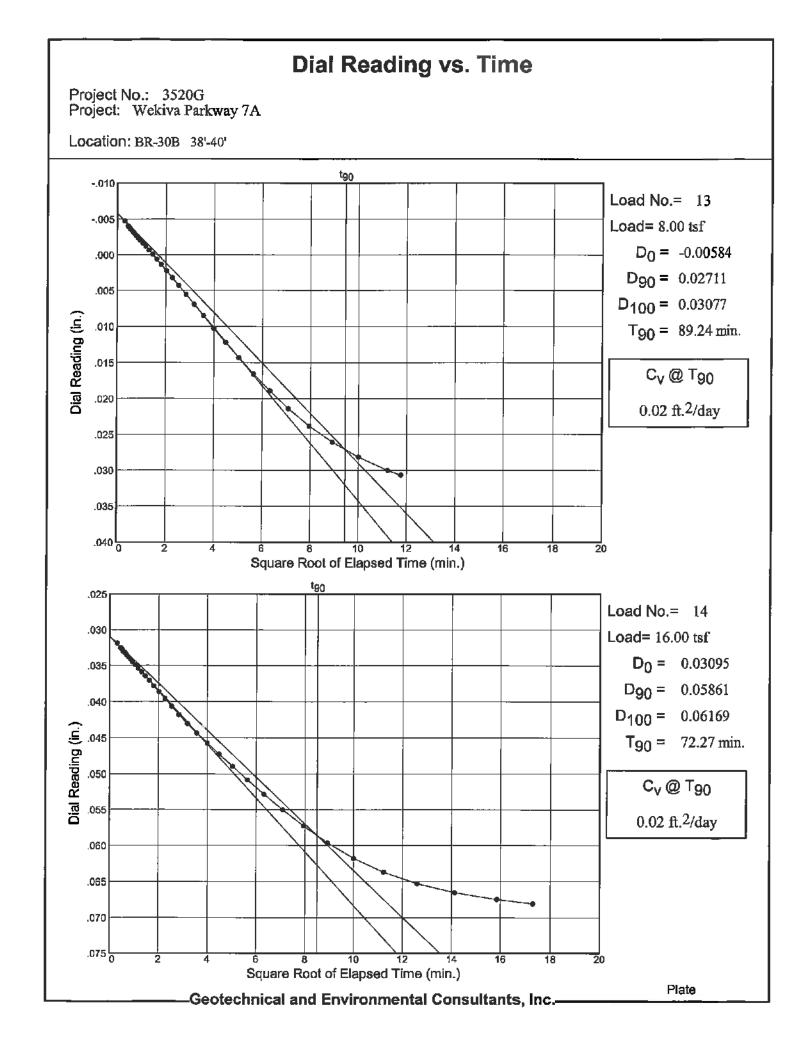


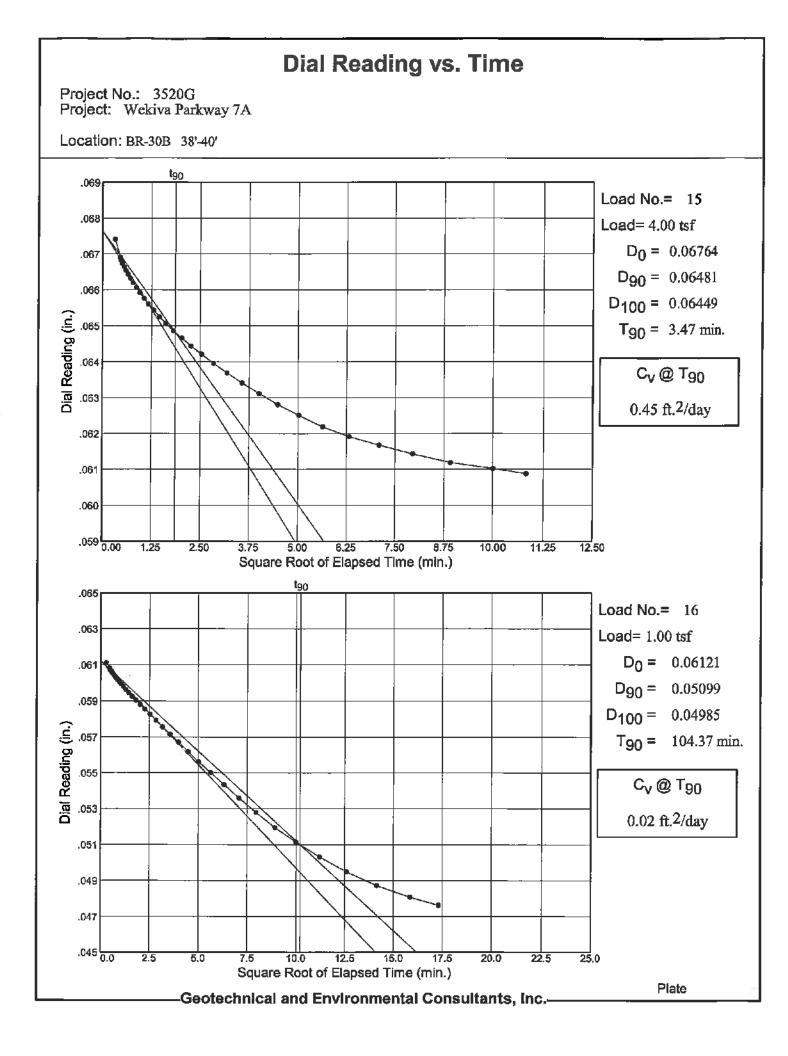


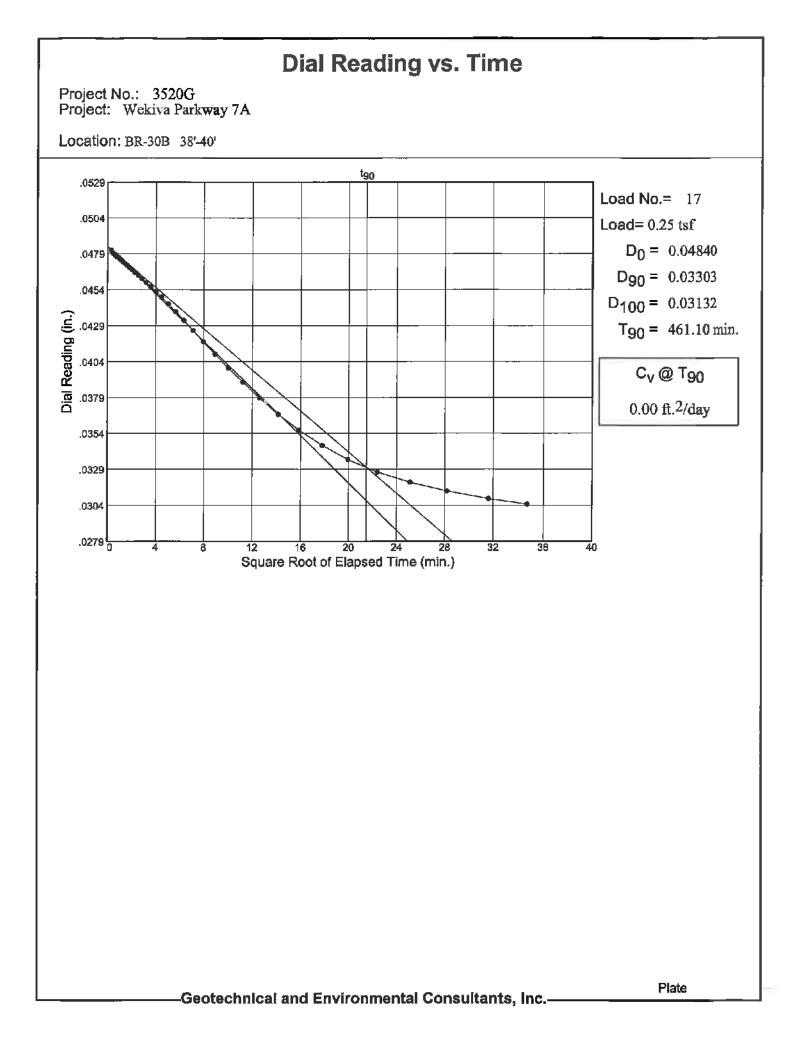


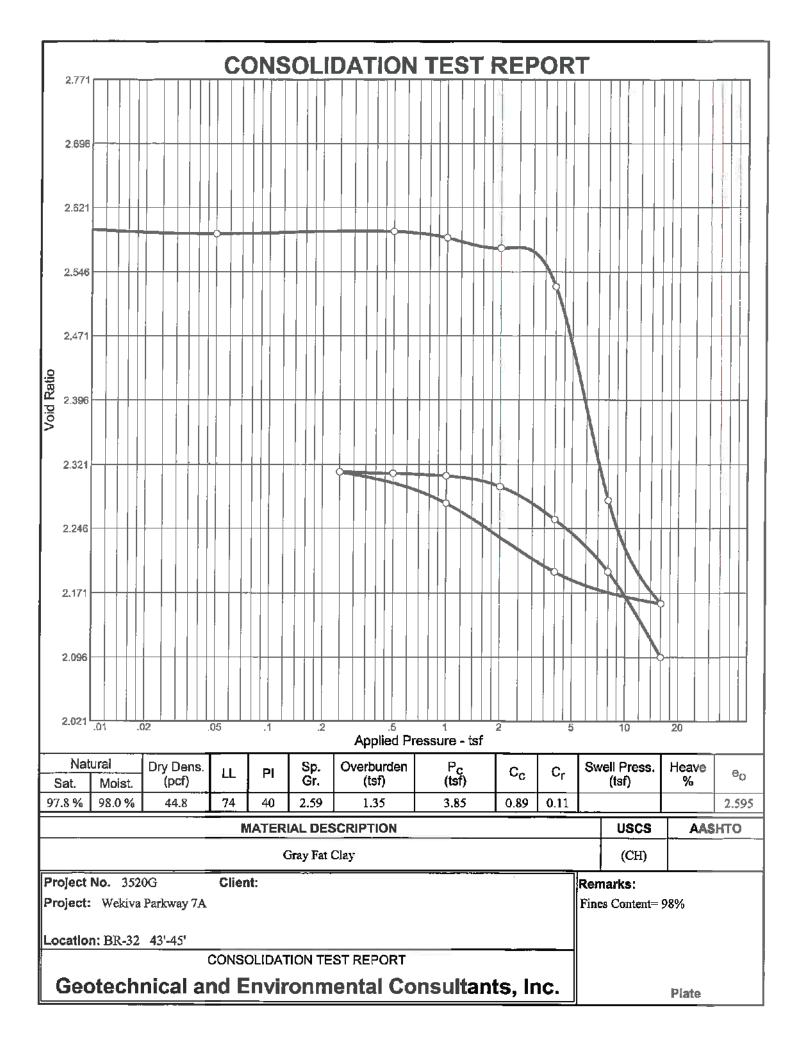


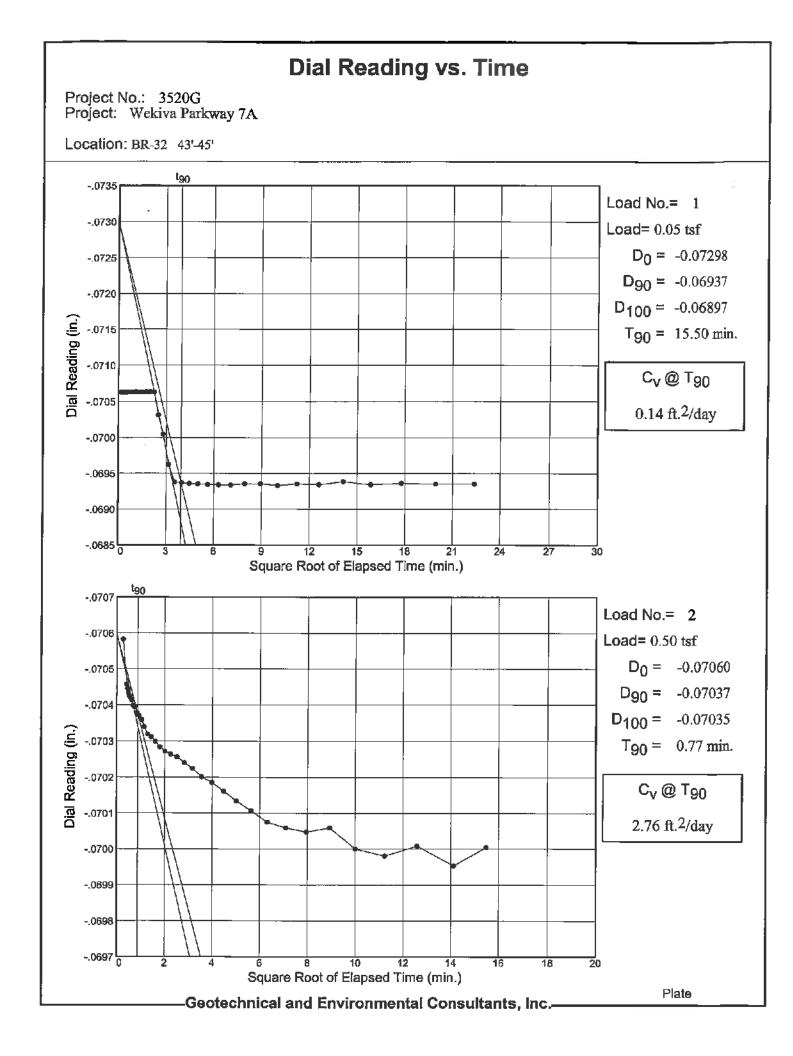


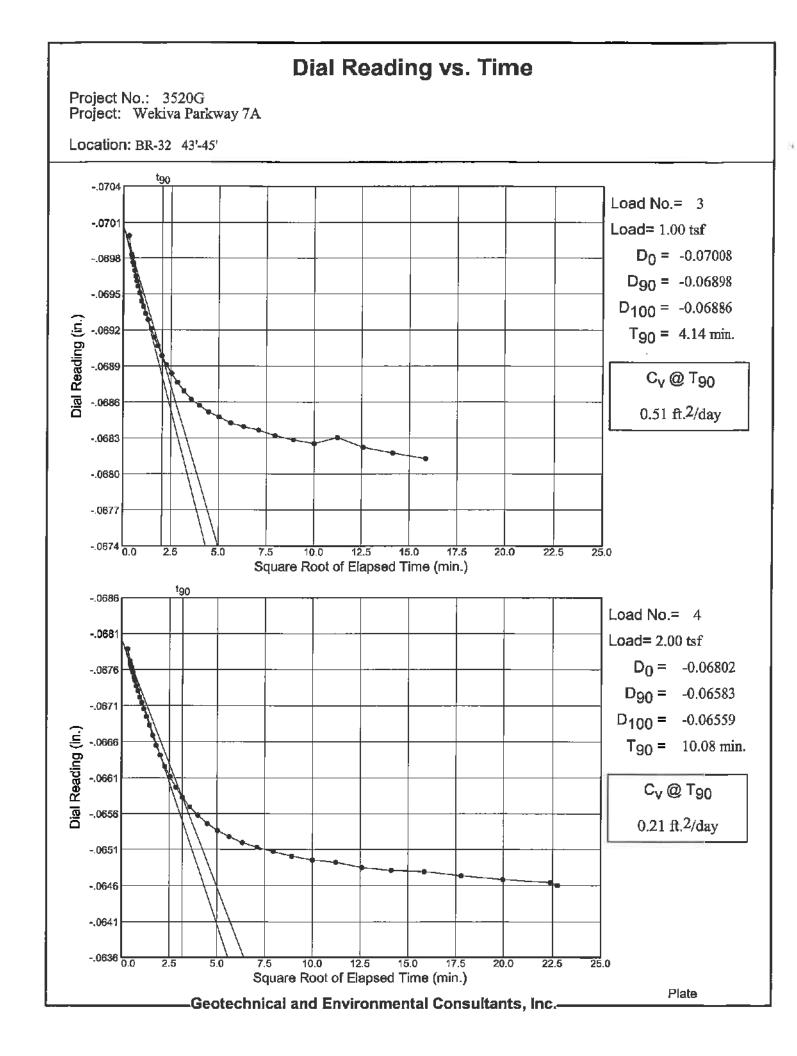


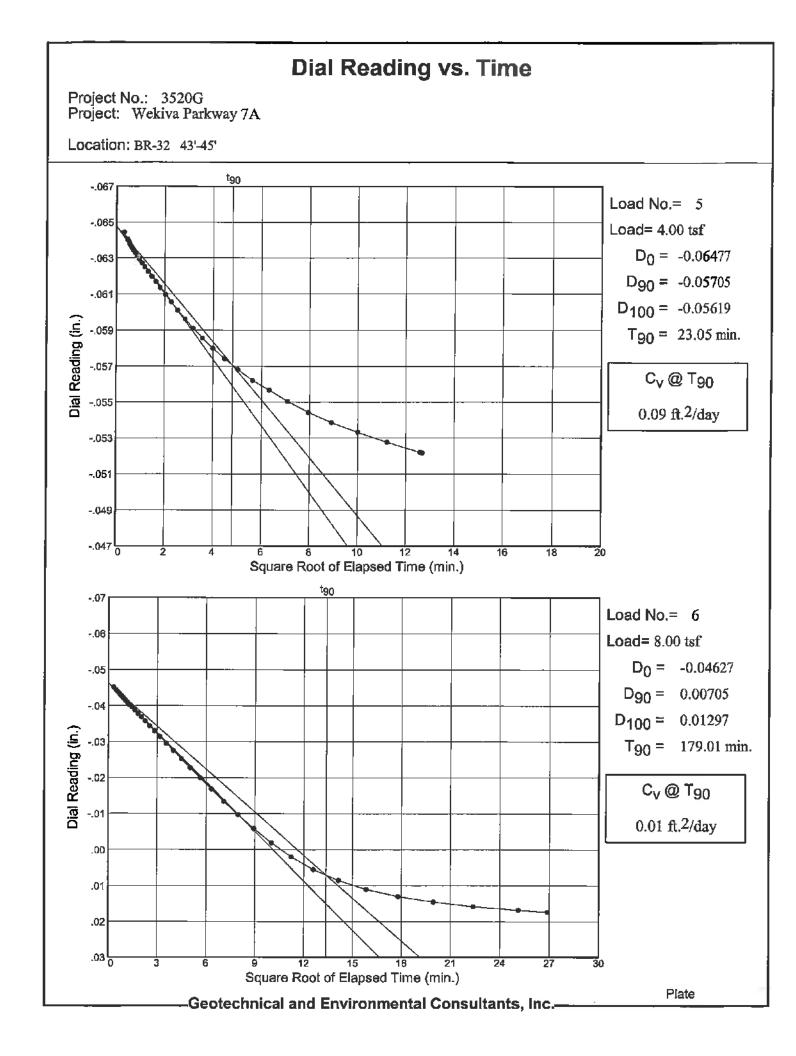


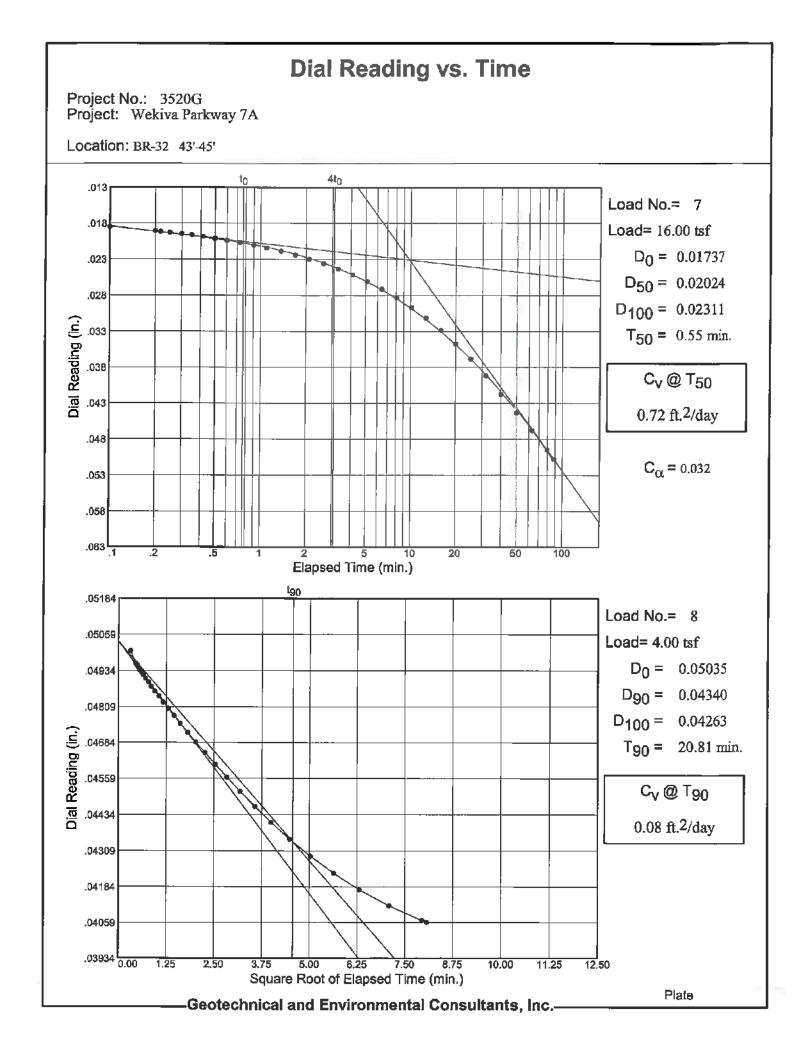


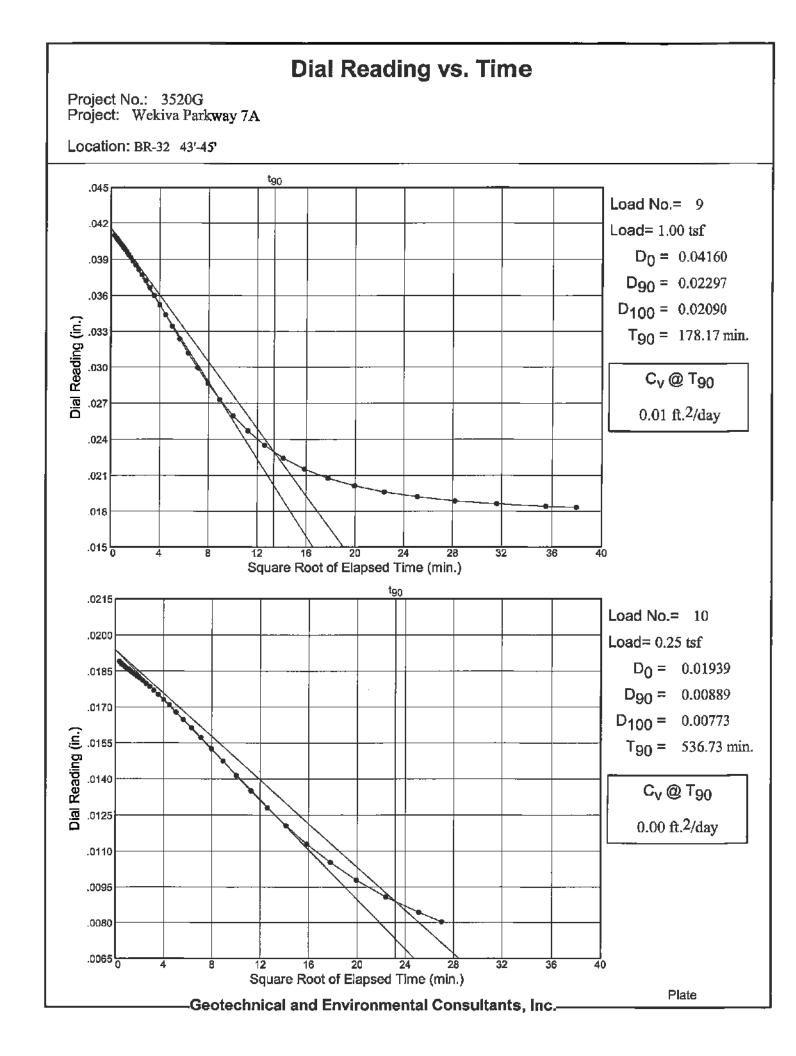


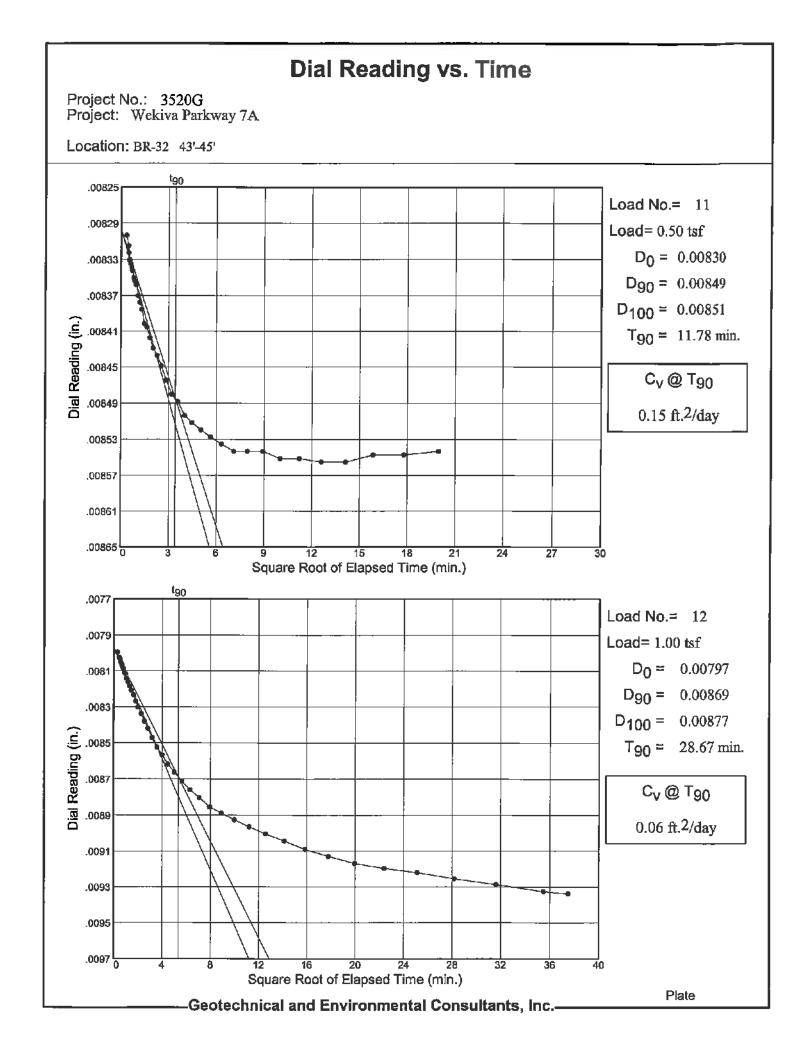


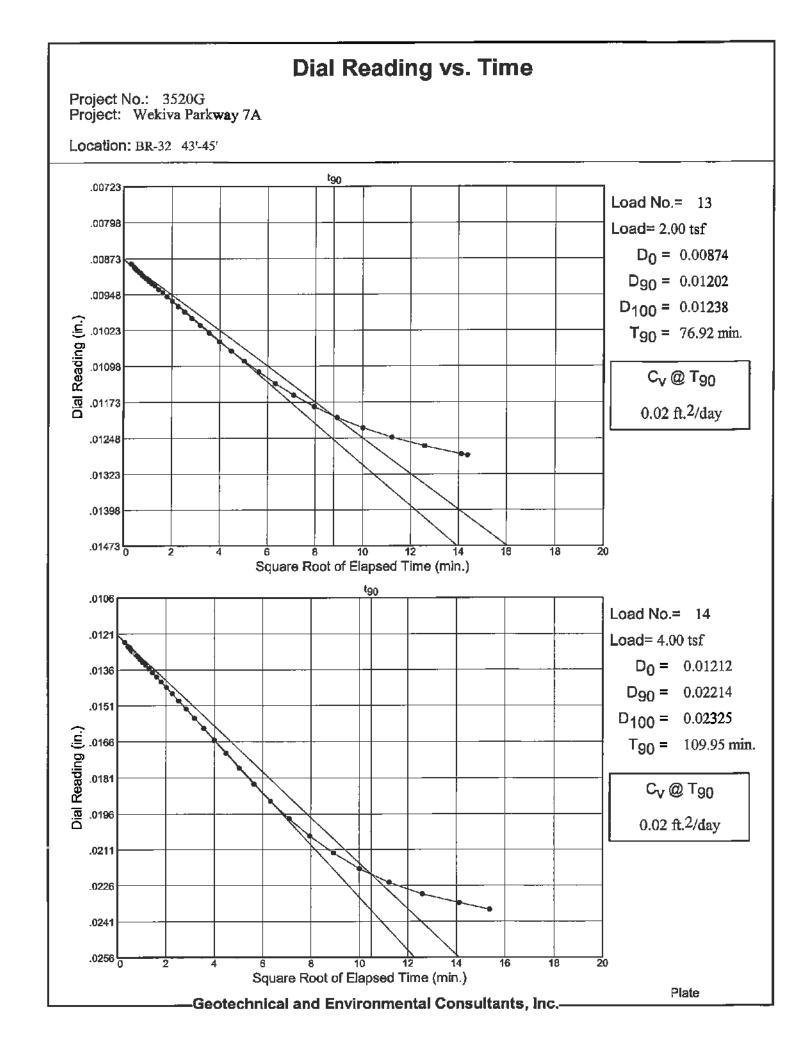


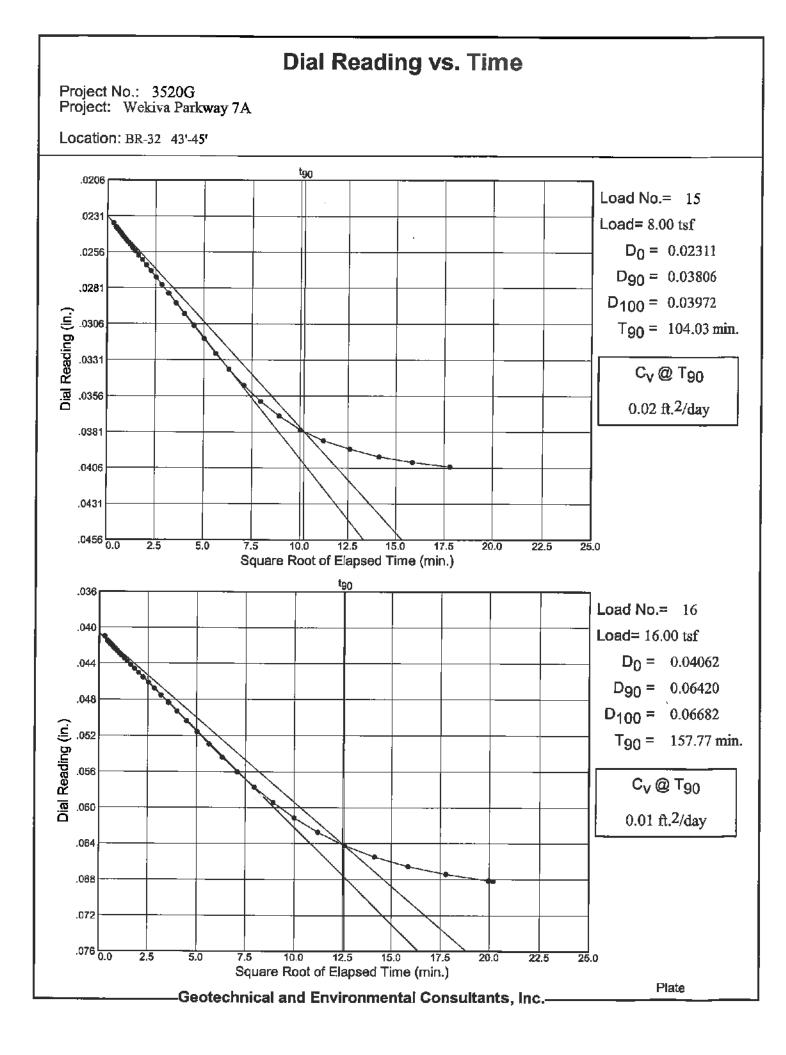


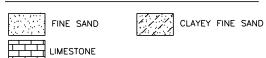











FDOT LINE & GRADE STUDY PRELIMINARY REPORT FOR STRUCTURES (7/2/12)

BORING LOCATION PLAN AND REPORT OF SPT BORING FOR STRUCTURES SHEET

BORING TH-1058 (SR 429 OVER GLADE VIEW DRIVE)

LEGEND

NOTES:

SM,SC,CH

- UPON COMPLETION OF THE BORING, THE BOREHOLE WAS GROUTED WITH PORTLAND CEMENT GROUT.
- 2) BORING TERMINATION DEPTH BELOW GROUND SURFACE
- 3) ARTESIAN CONDITIONS WERE NOT NOTED BY THE DRILLERS DURING BOREHOLE DRILLING. HOWEVER, BASED ON REVIEW OF THE POTENTIOMETRIC MAPS OF THE AREA, IF THE CONTRACTOR SHOULD ENCOUNTERED ARTESIAN CONDITIONS DURING CONSTRUCTION, THE ESTIMATED ELEVATION OF THE ARTESIAN HEAD IS APPROXIMATELY +30 FEET NAVD. THE CONTRACTOR SHALL BE PREPARED TO HANDLE ARTESIAN WATER LEVELS UP TO +30 FEET NAVD.
- 4) BORING STATION AND OFFSET IS SURVEYED RELATIVE TO CENTERLINE OF CONSTRUCTION.
- 5) BORING LATITUDE AND LONGITUDE OBTAINED USING HANDHELD GPS.
 - . STANDARD PENETRATION TEST (SPT) BORING LOCATION
 - CONE PENETRATION TEST SOUNDING LOCATION (\bullet)
 - Ν STANDARD PENETRATION RESISTANCE IN BLOWS PER FOOT
- 50 BLOWS FOR 3-INCHES PENETRATION INTO SOIL 50/3
- ▼ WATER LEVEL MEASURED ON DATE BORING INITIATED
- ∇ ESTIMATED NORMAL SEASONAL HIGH GROUNDWATER LEVEL
- GSE SURVEYED GROUND SURFACE ELEVATION (FEET NAVD)
- PERCENT PASSING NO. 200 SIEVE SIZE (PERCENT FINES) -200 (FM 1-T 88)
- COMPLETE LOSS OF DRILLING FLUID CIRCULATION

UNIFIED SOIL CLASSIFICATION SYSTEM

3 1/2-INCH DIAMETER TEMPORARY STEEL CASING

STANDARD PENETRATION TEST DATA: SPOON I.D.= 1.375" SPOON 0.D.= 2.0" HAMMER DROP= 30" HAMMER WEIGHT= 140 lbs. HAMMER TYPE= SAFETY TO 15', AUTOMATIC BELOW

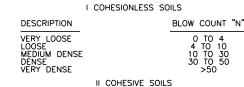
100

SCALE:-1"=200'

BLOW COUNT "N"

200

ENVIRONMENTAL CLASSIFICATION


SUBSTRUCTURE: CONCRETE: MODERATELY AGGRESSIVE STEEL: EXTREMELY AGGRESSIVE (pH=5.4)

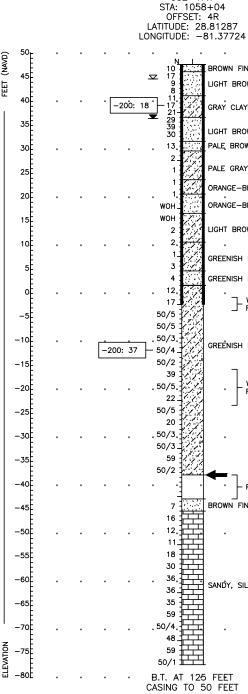
SUPERSTRUCTURE: SLIGHTLY AGGRESSIVE

TRACE <5% SHELL FRAGMENTS: FEW 5 TO 10% LITTLE 15 TO 25%

SOME 30 TO 45% MOSTLY 50 TO 100%

ENGINEERING CLASSIFICATION

DESCRIPTION


UNCONFINED COMPRESSIVE STRENGTH, QU, TSF

VERY SOFT	<1/4	0 TO 2
SOFT	1/4 TO 1/2	2 TO 4
MEDIUM STIFF	1/2 TO 1	4 TO 8
STIFF	1 TO 2	8 TO 15
VERY STIFF	2 TO 4	15 TO 30
HARD	>4	>30

WHILE THE BORINGS ARE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT THEIR RESPECTIVE LOCATIONS AND FOR THEIR RESPECTIVE VERTICAL REACHES, LOCAL VARIATIONS CHARACTERISTIC OF THE SUBSURFACE MATERIALS OF THE REGION ARE ANTICIPATED AND CHARACTERISTIC OF THE SUBSURFACE MATERIALS OF THE REGION ARE ANTICIPATED AND MAY BE ENCOUNTERED. THE BORING LOGS AND RELATED INFORMATION ARE BASED ON THE DRILLER'S LOGS AND VISUAL EXAMINATION OF SELECTED SAMPLES IN THE LABORATORY. THE DESCRIPTION REPRESENTS OUR INTERPRETATION OF SUBSURFACE CONDITIONS AT THE DESCRIPTION REPRESENTS OUR INTERPRETATION OF SUBSURFACE CONDITIONS AT THE DESCRIPTION REPRESENTS ON THE PARTICULAR DATE DRILLED.

GROUNDWATER ELEVATIONS SHOWN ON THE BORING LOGS REPRESENT GROUNDWATER SURFACES ENCOUNTERED ON THE DATES SHOWN. FLUCTUATIONS IN WATER TABLE LEVELS SHOULD BE ANTICIPATED THROUGHOUT THE YEAR.

TH-1058 01/12/12 GŚE=47.7

> .50 BROWN FINE SAND WITH SILT (SP-SM) 45 LIGHT BROWN FINE SAND (SP) GRAY CLAYEY FINE SAND (SC) LIGHT BROWN FINE SAND WITH SILT (SP-SM) PALE BROWN FINE SAND (SP) PALE GRAY CLAYEY FINE SAND (SC) DRANGE-BROWN CLAYEY FINE SAND (SC) ORANGE-BROWN FINE SAND WITH CLAY (SP-SC) 15 LIGHT BROWN CLAYEY FINE SAND (SC) 10 • GREENISH BROWN CLAYEY FINE SAND (SC) GREENISH BROWN FINE SAND WITH SILT (SP-SM) WITH CONSOLIDATED -10 GREENISH BROWN CLAYEY FINE SAND (SC) -15 WITH CONSOLIDATED -20 FRAGMENTS -25 -30 -35 -40 ROD DROP BROWN FINE SAND WITH SILT (SP-SM) -45 -50 -55 -60 SANDY, SILTY LIMĖSTONĖ -65 -70 -75 1-80

ANSPORTATION	REPORT OF SPT BORING FOR STRUC	TURE
FINANCIAL PROJECT ID		1
	PREJECT AME	SE-EL NI.
431081-4-32-01	WEKIVA PARKWAY	-